論文の概要: UniTraj: A Unified Framework for Scalable Vehicle Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2403.15098v2
- Date: Wed, 27 Mar 2024 10:26:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 11:48:28.243531
- Title: UniTraj: A Unified Framework for Scalable Vehicle Trajectory Prediction
- Title(参考訳): UniTraj: スケーラブルな自動車軌道予測のための統一フレームワーク
- Authors: Lan Feng, Mohammadhossein Bahari, Kaouther Messaoud Ben Amor, Éloi Zablocki, Matthieu Cord, Alexandre Alahi,
- Abstract要約: さまざまなデータセット、モデル、評価基準を統一する包括的なフレームワークであるUniTrajを紹介する。
我々は広範な実験を行い、他のデータセットに転送するとモデルの性能が大幅に低下することがわかった。
これらの知見を説明するために,データセットの特徴に関する洞察を提供する。
- 参考スコア(独自算出の注目度): 93.77809355002591
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vehicle trajectory prediction has increasingly relied on data-driven solutions, but their ability to scale to different data domains and the impact of larger dataset sizes on their generalization remain under-explored. While these questions can be studied by employing multiple datasets, it is challenging due to several discrepancies, e.g., in data formats, map resolution, and semantic annotation types. To address these challenges, we introduce UniTraj, a comprehensive framework that unifies various datasets, models, and evaluation criteria, presenting new opportunities for the vehicle trajectory prediction field. In particular, using UniTraj, we conduct extensive experiments and find that model performance significantly drops when transferred to other datasets. However, enlarging data size and diversity can substantially improve performance, leading to a new state-of-the-art result for the nuScenes dataset. We provide insights into dataset characteristics to explain these findings. The code can be found here: https://github.com/vita-epfl/UniTraj
- Abstract(参考訳): 車両軌道予測は、データ駆動型ソリューションにますます依存しているが、異なるデータドメインにスケールする能力と、その一般化に対するより大きなデータセットサイズの影響は、まだ解明されていない。
これらの質問は、複数のデータセットを使用することで研究できるが、データフォーマット、マップ解決、セマンティックセマンティックタイプなど、いくつかの相違点があるため、難しい。
これらの課題に対処するために、様々なデータセット、モデル、評価基準を統一する包括的なフレームワークであるUniTrajを導入し、車両軌道予測分野の新しい機会を示す。
特に、UniTrajを用いて広範な実験を行い、他のデータセットに転送するとモデルの性能が著しく低下することがわかった。
しかし、データサイズと多様性の増大はパフォーマンスを大幅に向上させ、nuScenesデータセットの新たな最先端結果をもたらす。
これらの知見を説明するために,データセットの特徴に関する洞察を提供する。
コードはここにある。 https://github.com/vita-epfl/UniTraj
関連論文リスト
- Uni$^2$Det: Unified and Universal Framework for Prompt-Guided Multi-dataset 3D Detection [64.08296187555095]
Uni$2$Detは3D検出のための統一的で普遍的なマルチデータセットトレーニングのためのフレームワークである。
マルチデータセット3D検出のためのマルチステージプロンプトモジュールを提案する。
ゼロショットクロスデータセット転送の結果は,提案手法の一般化能力を検証する。
論文 参考訳(メタデータ) (2024-09-30T17:57:50Z) - Improving Transferability for Cross-domain Trajectory Prediction via
Neural Stochastic Differential Equation [41.09061877498741]
外部要因とデータ取得戦略によるデータセット間での相違がある。
大規模データセットでトレーニングされたモデルの熟練した性能は、他の小規模データセットでの転送可能性に制限がある。
本稿では,ニューラル微分方程式(NSDE)の連続的利用に基づく不一致の緩和手法を提案する。
提案手法の有効性は,一般的なベンチマークデータセットであるnuScenes,Argoverse,Lyft,InterinterAction,Open Motionデータセット上で,最先端の軌道予測モデルに対して検証される。
論文 参考訳(メタデータ) (2023-12-26T06:50:29Z) - trajdata: A Unified Interface to Multiple Human Trajectory Datasets [32.93180256927027]
複数の人的トラジェクトリデータセットに対する統一インターフェースであるtrajdataを提案する。
Trajdataは、トラジェクトリとマップデータのためのシンプルで均一で効率的な表現とAPIを提供する。
論文 参考訳(メタデータ) (2023-07-26T02:45:59Z) - LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting [65.71129509623587]
道路交通予測はスマートシティのイニシアチブにおいて重要な役割を担い、ディープラーニングの力によって大きな進歩を遂げている。
しかし、現在の公開データセットで達成される有望な結果は、現実的なシナリオには適用できないかもしれない。
カリフォルニアで合計8,600のセンサーと5年間の時間カバレッジを含む、LargeSTベンチマークデータセットを紹介します。
論文 参考訳(メタデータ) (2023-06-14T05:48:36Z) - infoVerse: A Universal Framework for Dataset Characterization with
Multidimensional Meta-information [68.76707843019886]
infoVerseは、データセットの特徴付けのための普遍的なフレームワークである。
infoVerseは、様々なモデル駆動メタ情報を統合することで、データセットの多次元特性をキャプチャする。
実世界の3つのアプリケーション(データプルーニング、アクティブラーニング、データアノテーション)において、infoVerse空間で選択されたサンプルは、強いベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2023-05-30T18:12:48Z) - Combining datasets to increase the number of samples and improve model
fitting [7.4771091238795595]
我々はImp(ComImp)に基づくコンバインドデータセットと呼ばれる新しいフレームワークを提案する。
さらに,PCA,PCA-ComImpを用いたComImpの変種を提案する。
提案手法は,より小さなデータセット上での予測モデルの精度を大幅に向上させることで,転送学習と幾らか類似していることが示唆された。
論文 参考訳(メタデータ) (2022-10-11T06:06:37Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - Detection Hub: Unifying Object Detection Datasets via Query Adaptation
on Language Embedding [137.3719377780593]
新しいデザイン(De Detection Hubという名前)は、データセット認識とカテゴリ整列である。
データセットの不整合を緩和し、検出器が複数のデータセットをまたいで学習するための一貫性のあるガイダンスを提供する。
データセット間のカテゴリは、ワンホットなカテゴリ表現を単語埋め込みに置き換えることで、意味的に統一された空間に整列される。
論文 参考訳(メタデータ) (2022-06-07T17:59:44Z) - IDDA: a large-scale multi-domain dataset for autonomous driving [16.101248613062292]
本稿では,100以上の異なる視覚領域を持つセマンティックセグメンテーションのための大規模合成データセットを提案する。
このデータセットは、さまざまな天候や視点条件下でのトレーニングとテストデータのドメインシフトの課題に明示的に対処するために作成されている。
論文 参考訳(メタデータ) (2020-04-17T15:22:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。