Deep intra-operative illumination calibration of hyperspectral cameras
- URL: http://arxiv.org/abs/2409.07094v1
- Date: Wed, 11 Sep 2024 08:30:03 GMT
- Title: Deep intra-operative illumination calibration of hyperspectral cameras
- Authors: Alexander Baumann, Leonardo Ayala, Alexander Studier-Fischer, Jan Sellner, Berkin Ă–zdemir, Karl-Friedrich Kowalewski, Slobodan Ilic, Silvia Seidlitz, Lena Maier-Hein,
- Abstract summary: Hyperspectral imaging (HSI) is emerging as a promising novel imaging modality with various potential surgical applications.
We show that dynamically changing lighting conditions in the operating room dramatically affect the performance of HSI applications.
We propose a novel learning-based approach to automatically recalibrating hyperspectral images during surgery.
- Score: 73.08443963791343
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperspectral imaging (HSI) is emerging as a promising novel imaging modality with various potential surgical applications. Currently available cameras, however, suffer from poor integration into the clinical workflow because they require the lights to be switched off, or the camera to be manually recalibrated as soon as lighting conditions change. Given this critical bottleneck, the contribution of this paper is threefold: (1) We demonstrate that dynamically changing lighting conditions in the operating room dramatically affect the performance of HSI applications, namely physiological parameter estimation, and surgical scene segmentation. (2) We propose a novel learning-based approach to automatically recalibrating hyperspectral images during surgery and show that it is sufficiently accurate to replace the tedious process of white reference-based recalibration. (3) Based on a total of 742 HSI cubes from a phantom, porcine models, and rats we show that our recalibration method not only outperforms previously proposed methods, but also generalizes across species, lighting conditions, and image processing tasks. Due to its simple workflow integration as well as high accuracy, speed, and generalization capabilities, our method could evolve as a central component in clinical surgical HSI.
Related papers
- Data-Centric Learning Framework for Real-Time Detection of Aiming Beam in Fluorescence Lifetime Imaging Guided Surgery [3.8261910636994925]
This study introduces a novel data-centric approach to improve real-time surgical guidance using fiber-based fluorescence lifetime imaging (FLIm)
The primary challenge arises from the complex and variable conditions encountered in the surgical environment, particularly in Transoral Robotic Surgery (TORS)
An instance segmentation model was developed using a data-centric training strategy that improves accuracy by minimizing label noise and enhancing detection robustness.
arXiv Detail & Related papers (2024-11-11T22:04:32Z) - EndoGSLAM: Real-Time Dense Reconstruction and Tracking in Endoscopic Surgeries using Gaussian Splatting [53.38166294158047]
EndoGSLAM is an efficient approach for endoscopic surgeries, which integrates streamlined representation and differentiable Gaussianization.
Experiments show that EndoGSLAM achieves a better trade-off between intraoperative availability and reconstruction quality than traditional or neural SLAM approaches.
arXiv Detail & Related papers (2024-03-22T11:27:43Z) - Automating Catheterization Labs with Real-Time Perception [31.65246126754449]
AutoCBCT is a visual perception system seamlessly integrated with an angiography suite.
It enables a novel workflow with automated positioning, navigation and simulated test-runs, eliminating the need for manual operations and interactions.
The proposed system has been successfully deployed and studied in both lab and clinical settings, demonstrating significantly improved workflow efficiency.
arXiv Detail & Related papers (2024-03-09T02:05:23Z) - Next-generation Surgical Navigation: Marker-less Multi-view 6DoF Pose
Estimation of Surgical Instruments [66.74633676595889]
We present a multi-camera capture setup consisting of static and head-mounted cameras.
Second, we publish a multi-view RGB-D video dataset of ex-vivo spine surgeries, captured in a surgical wet lab and a real operating theatre.
Third, we evaluate three state-of-the-art single-view and multi-view methods for the task of 6DoF pose estimation of surgical instruments.
arXiv Detail & Related papers (2023-05-05T13:42:19Z) - Learning How To Robustly Estimate Camera Pose in Endoscopic Videos [5.073761189475753]
We propose a solution for stereo endoscopes that estimates depth and optical flow to minimize two geometric losses for camera pose estimation.
Most importantly, we introduce two learned adaptive per-pixel weight mappings that balance contributions according to the input image content.
We validate our approach on the publicly available SCARED dataset and introduce a new in-vivo dataset, StereoMIS.
arXiv Detail & Related papers (2023-04-17T07:05:01Z) - A Spatiotemporal Model for Precise and Efficient Fully-automatic 3D
Motion Correction in OCT [10.550562752812894]
OCT instruments image by-scanning a focused light spot across the retina, acquiring cross-sectional images to generate data.
Patient eye motion during the acquisition poses unique challenges: non-rigid, distorted distortions occur, leading to gaps in data.
We present a new distortion model and a corresponding fully-automatic, reference-free optimization strategy for computational robustness.
arXiv Detail & Related papers (2022-09-15T11:48:53Z) - Toward Fast, Flexible, and Robust Low-Light Image Enhancement [87.27326390675155]
We develop a new Self-Calibrated Illumination (SCI) learning framework for fast, flexible, and robust brightening images in real-world low-light scenarios.
Considering the computational burden of the cascaded pattern, we construct the self-calibrated module which realizes the convergence between results of each stage.
We make comprehensive explorations to SCI's inherent properties including operation-insensitive adaptability and model-irrelevant generality.
arXiv Detail & Related papers (2022-04-21T14:40:32Z) - Trans-SVNet: Accurate Phase Recognition from Surgical Videos via Hybrid
Embedding Aggregation Transformer [57.18185972461453]
We introduce for the first time in surgical workflow analysis Transformer to reconsider the ignored complementary effects of spatial and temporal features for accurate phase recognition.
Our framework is lightweight and processes the hybrid embeddings in parallel to achieve a high inference speed.
arXiv Detail & Related papers (2021-03-17T15:12:55Z) - Searching for Efficient Architecture for Instrument Segmentation in
Robotic Surgery [58.63306322525082]
Most applications rely on accurate real-time segmentation of high-resolution surgical images.
We design a light-weight and highly-efficient deep residual architecture which is tuned to perform real-time inference of high-resolution images.
arXiv Detail & Related papers (2020-07-08T21:38:29Z) - Spatiotemporal-Aware Augmented Reality: Redefining HCI in Image-Guided
Therapy [39.370739217840594]
Augmented reality (AR) has been introduced in the operating rooms in the last decade.
This paper shows how exemplary visualization are redefined by taking full advantage of head-mounted displays.
The awareness of the system from the geometric and physical characteristics of X-ray imaging allows the redefinition of different human-machine interfaces.
arXiv Detail & Related papers (2020-03-04T18:59:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.