論文の概要: Deep Generative Model based Rate-Distortion for Image Downscaling Assessment
- arxiv url: http://arxiv.org/abs/2403.15139v1
- Date: Fri, 22 Mar 2024 11:48:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 17:38:51.137123
- Title: Deep Generative Model based Rate-Distortion for Image Downscaling Assessment
- Title(参考訳): 画像ダウンスケーリング評価のための深部生成モデルに基づく速度歪み
- Authors: Yuanbang Liang, Bhavesh Garg, Paul L Rosin, Yipeng Qin,
- Abstract要約: 速度歪み(IDA-RD)による画像ダウンスケーリング評価を提案する。
IDA-RDは画像ダウンスケーリングアルゴリズムを定量的に評価するための新しい尺度である。
- 参考スコア(独自算出の注目度): 19.952415887709154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose Image Downscaling Assessment by Rate-Distortion (IDA-RD), a novel measure to quantitatively evaluate image downscaling algorithms. In contrast to image-based methods that measure the quality of downscaled images, ours is process-based that draws ideas from rate-distortion theory to measure the distortion incurred during downscaling. Our main idea is that downscaling and super-resolution (SR) can be viewed as the encoding and decoding processes in the rate-distortion model, respectively, and that a downscaling algorithm that preserves more details in the resulting low-resolution (LR) images should lead to less distorted high-resolution (HR) images in SR. In other words, the distortion should increase as the downscaling algorithm deteriorates. However, it is non-trivial to measure this distortion as it requires the SR algorithm to be blind and stochastic. Our key insight is that such requirements can be met by recent SR algorithms based on deep generative models that can find all matching HR images for a given LR image on their learned image manifolds. Extensive experimental results show the effectiveness of our IDA-RD measure.
- Abstract(参考訳): 本稿では,画像ダウンスケーリングアルゴリズムを定量的に評価する新しい手法であるIDA-RDによる画像ダウンスケーリングアセスメントを提案する。
ダウンスケール画像の品質を計測する画像ベース手法とは対照的に,我々は,ダウンスケール時に発生する歪みを測定するために,レート歪み理論からアイデアを引き出すプロセスベースである。
我々の主な考え方は、ダウンスケーリングと超解像(SR)をそれぞれ、レート歪みモデルにおける符号化と復号化のプロセスと見なすことができ、その結果の低解像度(LR)画像により多くの詳細を保存するダウンスケーリングアルゴリズムは、SRにおけるより歪みの少ない高解像度(HR)画像をもたらす、というものである。
言い換えれば、ダウンスケーリングアルゴリズムが劣化するにつれて歪みが増大する。
しかし、SRアルゴリズムが盲目かつ確率的である必要があるため、この歪みを測定することは自明ではない。
我々の重要な洞察は、これらの要求は、学習した画像多様体上の所定のLR画像に対して、全ての一致するHR画像を見つけることができる、深い生成モデルに基づく最近のSRアルゴリズムによって満たされるということである。
IDA-RD測定の有効性について検討した。
関連論文リスト
- Perceptual-Distortion Balanced Image Super-Resolution is a Multi-Objective Optimization Problem [23.833099288826045]
画素ベースの回帰損失を用いた単一画像超解法(SISR)モデルのトレーニングは、高い歪みメトリクススコアを得ることができる。
しかし、高周波の詳細の回復が不十分なため、しばしばぼやけた画像が生じる。
本稿では,Multi-Objective Optimization(MOO)をSISRモデルのトレーニングプロセスに組み込んで,知覚品質と歪みのバランスをとる手法を提案する。
論文 参考訳(メタデータ) (2024-09-05T02:14:04Z) - Efficient Test-Time Adaptation for Super-Resolution with Second-Order
Degradation and Reconstruction [62.955327005837475]
画像超解像(SR)は,低分解能(LR)から高分解能(HR)へのマッピングを,一対のHR-LRトレーニング画像を用いて学習することを目的としている。
SRTTAと呼ばれるSRの効率的なテスト時間適応フレームワークを提案し、SRモデルを異なる/未知の劣化型でテストドメインに迅速に適応させることができる。
論文 参考訳(メタデータ) (2023-10-29T13:58:57Z) - MrSARP: A Hierarchical Deep Generative Prior for SAR Image
Super-resolution [0.5161531917413706]
SAR画像のための新しい階層的深部生成モデルMrSARPを提案する。
MrSARPは、異なる解像度でターゲットの現実的なイメージであるかどうかを判断するために、複数の解像度の画像を共同でスコアする批評家と共同で訓練されている。
我々は,この深部生成モデルを用いて,同じターゲットの低解像度画像から高解像度画像を取得する方法を示す。
論文 参考訳(メタデータ) (2022-11-30T19:12:21Z) - Image Quality Assessment: Learning to Rank Image Distortion Level [0.0]
選択した歪みに対して、2つの登録画像の画質を比較することを学ぶ。
本手法は、画像歪みをシミュレーションし、その相対的な画質を評価することにより、絶対値を評価するよりも容易であるという事実を生かしている。
論文 参考訳(メタデータ) (2022-08-04T18:33:33Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
エイリアスの影響を抑制するために階層画像超解像ネットワーク(HSRNet)を提案する。
HSRNetは、他の作品よりも定量的かつ視覚的なパフォーマンスを向上し、エイリアスをより効果的に再送信する。
論文 参考訳(メタデータ) (2022-06-07T14:55:32Z) - Hierarchical Conditional Flow: A Unified Framework for Image
Super-Resolution and Image Rescaling [139.25215100378284]
画像SRと画像再スケーリングのための統合フレームワークとして階層的条件フロー(HCFlow)を提案する。
HCFlowは、LR画像と残りの高周波成分の分布を同時にモデル化することにより、HRとLR画像ペア間のマッピングを学習する。
さらに性能を高めるために、知覚的損失やGAN損失などの他の損失と、トレーニングで一般的に使用される負の対数類似損失とを組み合わせる。
論文 参考訳(メタデータ) (2021-08-11T16:11:01Z) - Real-World Super-Resolution of Face-Images from Surveillance Cameras [25.258587196435464]
本稿では,現実的なLR/HRトレーニングペアを生成するための新しいフレームワークを提案する。
本フレームワークは、実写のぼやけたカーネル、ノイズ分布、JPEG圧縮アーチファクトを推定し、ソース領域のものと類似した画像特性を持つLR画像を生成する。
我々はGANベースのSRモデルを用いて、よく使われるVGG-loss[24]とLPIPS-loss[52]を交換した。
論文 参考訳(メタデータ) (2021-02-05T11:38:30Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
実シーンにスーパーリゾリューション(SR)法を適用する際に周波数領域の整合性を保証する新しい周波数一貫性適応(FCA)を提案する。
監視されていない画像から劣化カーネルを推定し、対応するLow-Resolution (LR)画像を生成する。
ドメイン一貫性のあるLR-HRペアに基づいて、容易に実装可能な畳み込みニューラルネットワーク(CNN)SRモデルを訓練する。
論文 参考訳(メタデータ) (2020-12-18T08:25:39Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z) - Invertible Image Rescaling [118.2653765756915]
Invertible Rescaling Net (IRN) を開発した。
我々は、ダウンスケーリングプロセスにおいて、指定された分布に従う潜在変数を用いて、失われた情報の分布をキャプチャする。
論文 参考訳(メタデータ) (2020-05-12T09:55:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。