論文の概要: Perceptual-Distortion Balanced Image Super-Resolution is a Multi-Objective Optimization Problem
- arxiv url: http://arxiv.org/abs/2409.03179v1
- Date: Thu, 5 Sep 2024 02:14:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 22:33:03.223551
- Title: Perceptual-Distortion Balanced Image Super-Resolution is a Multi-Objective Optimization Problem
- Title(参考訳): 知覚歪みバランス画像超解法は多目的最適化問題である
- Authors: Qiwen Zhu, Yanjie Wang, Shilv Cai, Liqun Chen, Jiahuan Zhou, Luxin Yan, Sheng Zhong, Xu Zou,
- Abstract要約: 画素ベースの回帰損失を用いた単一画像超解法(SISR)モデルのトレーニングは、高い歪みメトリクススコアを得ることができる。
しかし、高周波の詳細の回復が不十分なため、しばしばぼやけた画像が生じる。
本稿では,Multi-Objective Optimization(MOO)をSISRモデルのトレーニングプロセスに組み込んで,知覚品質と歪みのバランスをとる手法を提案する。
- 参考スコア(独自算出の注目度): 23.833099288826045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training Single-Image Super-Resolution (SISR) models using pixel-based regression losses can achieve high distortion metrics scores (e.g., PSNR and SSIM), but often results in blurry images due to insufficient recovery of high-frequency details. Conversely, using GAN or perceptual losses can produce sharp images with high perceptual metric scores (e.g., LPIPS), but may introduce artifacts and incorrect textures. Balancing these two types of losses can help achieve a trade-off between distortion and perception, but the challenge lies in tuning the loss function weights. To address this issue, we propose a novel method that incorporates Multi-Objective Optimization (MOO) into the training process of SISR models to balance perceptual quality and distortion. We conceptualize the relationship between loss weights and image quality assessment (IQA) metrics as black-box objective functions to be optimized within our Multi-Objective Bayesian Optimization Super-Resolution (MOBOSR) framework. This approach automates the hyperparameter tuning process, reduces overall computational cost, and enables the use of numerous loss functions simultaneously. Extensive experiments demonstrate that MOBOSR outperforms state-of-the-art methods in terms of both perceptual quality and distortion, significantly advancing the perception-distortion Pareto frontier. Our work points towards a new direction for future research on balancing perceptual quality and fidelity in nearly all image restoration tasks. The source code and pretrained models are available at: https://github.com/ZhuKeven/MOBOSR.
- Abstract(参考訳): 画素ベースの回帰損失を用いた単一画像超解法(SISR)モデルのトレーニングは、高歪みのメトリクススコア(例えば、PSNR、SSIM)が得られるが、高頻度の詳細の回復が不十分なため、しばしばぼやけた画像が得られる。
逆に、GANや知覚的損失を用いることで、高い知覚メトリックスコア(例えばLPIPS)を持つシャープなイメージを生成することができるが、アーティファクトや誤ったテクスチャを導入することもある。
この2つのタイプの損失のバランスをとることは、歪みと知覚の間のトレードオフを達成するのに役立ちますが、課題は損失関数の重みを調整することです。
そこで本研究では,Multi-Objective Optimization(MOO)をSISRモデルのトレーニングプロセスに組み込んで,知覚品質と歪みのバランスをとる手法を提案する。
我々は、損失重みと画像品質評価(IQA)メトリクスの関係を、多目的ベイズ最適化超解法(MOBOSR)フレームワークで最適化されるブラックボックス目的関数として概念化する。
このアプローチはハイパーパラメータチューニングプロセスを自動化し、全体的な計算コストを削減し、多数の損失関数を同時に使用可能にする。
広汎な実験により、MOBOSRは知覚品質と歪みの両方の観点から最先端の手法より優れており、知覚歪曲パレートフロンティアを著しく向上させることが示された。
我々の研究は、ほぼ全ての画像復元作業における知覚品質と忠実性のバランスに関する今後の研究の方向性を指している。
ソースコードと事前訓練されたモデルは、https://github.com/ZhuKeven/MOBOSR.comで入手できる。
関連論文リスト
- Dual-Representation Interaction Driven Image Quality Assessment with Restoration Assistance [11.983231834400698]
歪み画像の非参照画像品質評価は、画像内容のばらつきと歪みの多様性のために常に難しい問題である。
以前のIQAモデルは、主に、品質スコア予測のための品質認識表現を得るために、合成画像の明示的な単一品質特徴を符号化していた。
低画質画像の劣化・品質情報を別々にモデル化するDRI法を提案する。
論文 参考訳(メタデータ) (2024-11-26T12:48:47Z) - Perception-Distortion Balanced Super-Resolution: A Multi-Objective Optimization Perspective [16.762410459930006]
超解像(SR)のような画像復元作業における高知覚品質と低歪み度は重要な目標である
現在の勾配に基づく手法は、矛盾する損失の逆勾配方向のため、これらの目的のバランスをとるのが難しい。
本稿では、多目的最適化問題としてSRの知覚歪トレードオフを定式化し、勾配自由進化アルゴリズム(EA)と勾配ベースAdamを統合することにより、新しいアルゴリズムを開発する。
論文 参考訳(メタデータ) (2023-12-24T04:59:30Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
拡散モデルに基づく画像復元(IR)は、拡散モデルを用いて劣化した画像から高品質な(本社)画像を復元し、有望な性能を達成することを目的としている。
既存のほとんどの手法では、HQイメージをステップバイステップで復元するために長いシリアルサンプリングチェーンが必要であるため、高価なサンプリング時間と高い計算コストがかかる。
本研究では,拡散モデルに基づくIRモデルを異なる視点,すなわちDeqIRと呼ばれるDeQ(Deep equilibrium)固定点系で再考することを目的とする。
論文 参考訳(メタデータ) (2023-11-20T08:27:56Z) - Efficient Model Agnostic Approach for Implicit Neural Representation
Based Arbitrary-Scale Image Super-Resolution [5.704360536038803]
単一の画像超解像(SISR)は、主に深層畳み込みネットワークによって大きく進歩した。
従来のネットワークは、画像を一定のスケールにスケールアップすることに限定されており、任意のスケールのイメージを生成するために暗黙の神経機能を利用することになる。
我々は,任意のスケールで超解像を実現する,新しい,効率的なフレームワークであるMixture of Experts Implicit Super-Resolution(MoEISR)を導入する。
論文 参考訳(メタデータ) (2023-11-20T05:34:36Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN)は、ダウンスケーリングとアップスケーリングのサイクルを共同で最適化することにより、アップスケーリングの精度を大幅に向上させることができる。
本研究の1つのモデルのみをトレーニングすることにより、任意の画像再スケーリングを実現するために、単純で効果的な非可逆的再スケーリングネットワーク(IARN)を提案する。
LR出力の知覚品質を損なうことなく、双方向任意再スケーリングにおいて最先端(SOTA)性能を実現する。
論文 参考訳(メタデータ) (2022-09-26T22:22:30Z) - Perception-Distortion Balanced ADMM Optimization for Single-Image
Super-Resolution [29.19388490351459]
低周波制約(LFc-SR)を持つ新しい超解像モデルを提案する。
制約付きモデルの非自明な学習のためのADMMに基づく交互最適化手法を提案する。
実験の結果,提案手法は加工後処理の煩雑さを伴わず,最先端の性能を達成できた。
論文 参考訳(メタデータ) (2022-08-05T05:37:55Z) - Universal and Flexible Optical Aberration Correction Using Deep-Prior
Based Deconvolution [51.274657266928315]
そこで本研究では,収差画像とpsfマップを入力とし,レンズ固有深層プリエントを組み込んだ潜在高品質版を生成する,psf対応プラグイン・アンド・プレイ深層ネットワークを提案する。
具体的には、多彩なレンズの集合からベースモデルを事前訓練し、パラメータを迅速に精製して特定のレンズに適応させる。
論文 参考訳(メタデータ) (2021-04-07T12:00:38Z) - Designing a Practical Degradation Model for Deep Blind Image
Super-Resolution [134.9023380383406]
単一画像スーパーレゾリューション (sisr) 法は, 推定劣化モデルが実画像から逸脱した場合はうまく動作しない。
本稿では, ランダムにシャッフルされたブラー, ダウンサンプリング, ノイズ劣化からなる, より複雑で実用的な劣化モデルを提案する。
論文 参考訳(メタデータ) (2021-03-25T17:40:53Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。