Your Image is My Video: Reshaping the Receptive Field via Image-To-Video Differentiable AutoAugmentation and Fusion
- URL: http://arxiv.org/abs/2403.15194v1
- Date: Fri, 22 Mar 2024 13:27:57 GMT
- Title: Your Image is My Video: Reshaping the Receptive Field via Image-To-Video Differentiable AutoAugmentation and Fusion
- Authors: Sofia Casarin, Cynthia I. Ugwu, Sergio Escalera, Oswald Lanz,
- Abstract summary: We introduce the first Differentiable Augmentation Search method (DAS) to generate variations of images that can be processed as videos.
DAS is extremely fast and flexible, allowing the search on very large search spaces in less than a GPU day.
We leverage DAS to guide the reshaping of the spatial receptive field by selecting task-dependant transformations.
- Score: 35.88039888482076
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The landscape of deep learning research is moving towards innovative strategies to harness the true potential of data. Traditionally, emphasis has been on scaling model architectures, resulting in large and complex neural networks, which can be difficult to train with limited computational resources. However, independently of the model size, data quality (i.e. amount and variability) is still a major factor that affects model generalization. In this work, we propose a novel technique to exploit available data through the use of automatic data augmentation for the tasks of image classification and semantic segmentation. We introduce the first Differentiable Augmentation Search method (DAS) to generate variations of images that can be processed as videos. Compared to previous approaches, DAS is extremely fast and flexible, allowing the search on very large search spaces in less than a GPU day. Our intuition is that the increased receptive field in the temporal dimension provided by DAS could lead to benefits also to the spatial receptive field. More specifically, we leverage DAS to guide the reshaping of the spatial receptive field by selecting task-dependant transformations. As a result, compared to standard augmentation alternatives, we improve in terms of accuracy on ImageNet, Cifar10, Cifar100, Tiny-ImageNet, Pascal-VOC-2012 and CityScapes datasets when plugging-in our DAS over different light-weight video backbones.
Related papers
- Erase, then Redraw: A Novel Data Augmentation Approach for Free Space Detection Using Diffusion Model [5.57325257338134]
Traditional data augmentation methods cannot alter high-level semantic attributes.
We propose a text-to-image diffusion model to parameterize image-to-image transformations.
We achieve this goal by erasing instances of real objects from the original dataset and generating new instances with similar semantics in the erased regions.
arXiv Detail & Related papers (2024-09-30T10:21:54Z) - Image-GS: Content-Adaptive Image Representation via 2D Gaussians [55.15950594752051]
We propose Image-GS, a content-adaptive image representation.
Using anisotropic 2D Gaussians as the basis, Image-GS shows high memory efficiency, supports fast random access, and offers a natural level of detail stack.
General efficiency and fidelity of Image-GS are validated against several recent neural image representations and industry-standard texture compressors.
We hope this research offers insights for developing new applications that require adaptive quality and resource control, such as machine perception, asset streaming, and content generation.
arXiv Detail & Related papers (2024-07-02T00:45:21Z) - LiteNeXt: A Novel Lightweight ConvMixer-based Model with Self-embedding Representation Parallel for Medical Image Segmentation [2.0901574458380403]
We propose a new lightweight but efficient model, namely LiteNeXt, for medical image segmentation.
LiteNeXt is trained from scratch with small amount of parameters (0.71M) and Giga Floating Point Operations Per Second (0.42).
arXiv Detail & Related papers (2024-04-04T01:59:19Z) - DRCT: Saving Image Super-resolution away from Information Bottleneck [7.765333471208582]
Vision Transformer-based approaches for low-level vision tasks have achieved widespread success.
Dense-residual-connected Transformer (DRCT) is proposed to mitigate the loss of spatial information.
Our approach surpasses state-of-the-art methods on benchmark datasets.
arXiv Detail & Related papers (2024-03-31T15:34:45Z) - GeoWizard: Unleashing the Diffusion Priors for 3D Geometry Estimation from a Single Image [94.56927147492738]
We introduce GeoWizard, a new generative foundation model designed for estimating geometric attributes from single images.
We show that leveraging diffusion priors can markedly improve generalization, detail preservation, and efficiency in resource usage.
We propose a simple yet effective strategy to segregate the complex data distribution of various scenes into distinct sub-distributions.
arXiv Detail & Related papers (2024-03-18T17:50:41Z) - Restormer: Efficient Transformer for High-Resolution Image Restoration [118.9617735769827]
convolutional neural networks (CNNs) perform well at learning generalizable image priors from large-scale data.
Transformers have shown significant performance gains on natural language and high-level vision tasks.
Our model, named Restoration Transformer (Restormer), achieves state-of-the-art results on several image restoration tasks.
arXiv Detail & Related papers (2021-11-18T18:59:10Z) - Learning Representational Invariances for Data-Efficient Action
Recognition [52.23716087656834]
We show that our data augmentation strategy leads to promising performance on the Kinetics-100, UCF-101, and HMDB-51 datasets.
We also validate our data augmentation strategy in the fully supervised setting and demonstrate improved performance.
arXiv Detail & Related papers (2021-03-30T17:59:49Z) - CNNs for JPEGs: A Study in Computational Cost [49.97673761305336]
Convolutional neural networks (CNNs) have achieved astonishing advances over the past decade.
CNNs are capable of learning robust representations of the data directly from the RGB pixels.
Deep learning methods capable of learning directly from the compressed domain have been gaining attention in recent years.
arXiv Detail & Related papers (2020-12-26T15:00:10Z) - Learning Temporally Invariant and Localizable Features via Data
Augmentation for Video Recognition [9.860323576151897]
In image recognition, learning spatially invariant features is a key factor in improving recognition performance and augmentation.
In this study, we extend these strategies to the temporal dimension for videos to learn temporally invariant or temporally local features.
Based on our novel temporal data augmentation algorithms, video recognition performances are improved using only a limited amount of training data.
arXiv Detail & Related papers (2020-08-13T06:56:52Z) - IntroVAC: Introspective Variational Classifiers for Learning
Interpretable Latent Subspaces [6.574517227976925]
IntroVAC learns interpretable latent subspaces by exploiting information from an additional label.
We show that IntroVAC is able to learn meaningful directions in the latent space enabling fine manipulation of image attributes.
arXiv Detail & Related papers (2020-08-03T10:21:41Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.