論文の概要: VPAS: Publicly Verifiable and Privacy-Preserving Aggregate Statistics on Distributed Datasets
- arxiv url: http://arxiv.org/abs/2403.15208v1
- Date: Fri, 22 Mar 2024 13:50:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 17:19:18.262940
- Title: VPAS: Publicly Verifiable and Privacy-Preserving Aggregate Statistics on Distributed Datasets
- Title(参考訳): VPAS: 分散データセットに関する公開検証とプライバシ保護統計
- Authors: Mohammed Alghazwi, Dewi Davies-Batista, Dimka Karastoyanova, Fatih Turkmen,
- Abstract要約: プライバシ保護アグリゲーションプロトコルにおける入力検証と公開検証の課題について検討する。
これらの要件を満たす「VPAS」プロトコルを提案する。
本研究は,従来のzkSNARKを用いた場合に比べて,本プロトコルの妥当性に関するオーバーヘッドが10倍低いことを示す。
- 参考スコア(独自算出の注目度): 4.181095166452762
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Aggregate statistics play an important role in extracting meaningful insights from distributed data while preserving privacy. A growing number of application domains, such as healthcare, utilize these statistics in advancing research and improving patient care. In this work, we explore the challenge of input validation and public verifiability within privacy-preserving aggregation protocols. We address the scenario in which a party receives data from multiple sources and must verify the validity of the input and correctness of the computations over this data to third parties, such as auditors, while ensuring input data privacy. To achieve this, we propose the "VPAS" protocol, which satisfies these requirements. Our protocol utilizes homomorphic encryption for data privacy, and employs Zero-Knowledge Proofs (ZKP) and a blockchain system for input validation and public verifiability. We constructed VPAS by extending existing verifiable encryption schemes into secure protocols that enable N clients to encrypt, aggregate, and subsequently release the final result to a collector in a verifiable manner. We implemented and experimentally evaluated VPAS with regard to encryption costs, proof generation, and verification. The findings indicate that the overhead associated with verifiability in our protocol is 10x lower than that incurred by simply using conventional zkSNARKs. This enhanced efficiency makes it feasible to apply input validation with public verifiability across a wider range of applications or use cases that can tolerate moderate computational overhead associated with proof generation.
- Abstract(参考訳): 集約統計は、プライバシを保持しながら、分散データから意味のある洞察を抽出する上で重要な役割を果たす。
医療などのアプリケーションドメインの増加は、研究の進展と患者ケアの改善にこれらの統計を活用している。
本研究では,プライバシ保護アグリゲーションプロトコルにおける入力検証と公開検証の課題について検討する。
我々は,複数のソースからデータを受け取る場合のシナリオに対処し,このデータに対する計算の入力と正当性を監査人などの第三者に検証し,入力データのプライバシを確保する必要がある。
そこで我々は,これらの要件を満たすVPASプロトコルを提案する。
データプライバシには同型暗号化を使用し,Zero-Knowledge Proofs(ZKP)とブロックチェーンシステムを用いて入力検証と公開検証を行う。
我々は,既存の検証可能な暗号化スキームをセキュアなプロトコルに拡張してVPASを構築した。
我々は、暗号化コスト、証明生成、検証に関してVPASを実装し、実験的に評価した。
以上の結果から,従来のzkSNARKを用いた場合に比べて,プロトコルの妥当性に関するオーバーヘッドが10倍低いことが示唆された。
この強化された効率により、より広い範囲のアプリケーションや、証明生成に関連する適度な計算オーバーヘッドを許容できるユースケースに対して、パブリックな検証性を備えた入力検証を適用することが可能となる。
関連論文リスト
- Privacy-Preserving Verifiable Neural Network Inference Service [4.131956503199438]
我々は,クライアントデータサンプルのプライバシを保存するために,プライバシ保護と検証が可能なCNN推論手法を開発した。
vPINは、クライアントデータのプライバシ保証と証明可能な検証性を提供しながら、証明サイズの観点から高い効率を達成する。
論文 参考訳(メタデータ) (2024-11-12T01:09:52Z) - Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - Scalable Zero-Knowledge Proofs for Verifying Cryptographic Hashing in Blockchain Applications [16.72979347045808]
ゼロ知識証明(ZKP)は、現代のブロックチェーンシステムのスケーラビリティ問題に対処するための、有望なソリューションとして登場した。
本研究では,暗号ハッシュの計算完全性を保証するため,ZKPの生成と検証を行う手法を提案する。
論文 参考訳(メタデータ) (2024-07-03T21:19:01Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
コントロールエリアネットワーク(CAN)バスは車内通信を本質的に安全でないものにしている。
本稿では,CANバスにおける15の認証プロトコルをレビューし,比較する。
実装の容易性に寄与する本質的な運用基準に基づくプロトコルの評価を行う。
論文 参考訳(メタデータ) (2024-01-19T14:52:04Z) - Verifiable Privacy-Preserving Computing [3.543432625843538]
我々は、検証可能性と、分散データ上のプライバシ保存計算を組み合わせた既存のソリューションを分析する。
我々は、ソリューションアプローチ、セキュリティ、効率、実用性に関する37の異なるスキームを分類し比較する。
論文 参考訳(メタデータ) (2023-09-15T08:44:13Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
本稿では,UAPに対して正常サンプルと逆サンプルの異なる応答を誘導する,データに依存しない逆検出フレームワークを提案する。
実験結果から,本手法は様々なテキスト分類タスクにおいて,競合検出性能を実現することが示された。
論文 参考訳(メタデータ) (2023-06-27T02:54:07Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
推定検証リリース(EVR)と呼ばれる新しい差分プライバシーパラダイムを提案する。
EVRパラダイムは、まずメカニズムのプライバシパラメータを推定し、その保証を満たすかどうかを確認し、最後にクエリ出力を解放する。
我々の実証的な評価は、新たに提案されたEVRパラダイムが、プライバシ保護機械学習のユーティリティプライバシトレードオフを改善することを示している。
論文 参考訳(メタデータ) (2023-04-17T00:38:01Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
垂直ロジスティック回帰(VLR)をミニバッチ降下勾配で訓練した。
我々は、オープンソースのフェデレーション学習フレームワークのクラスにおいて、VLRの包括的で厳密なプライバシー分析を提供する。
論文 参考訳(メタデータ) (2022-07-19T05:47:30Z) - PeQES: A Platform for Privacy-enhanced Quantitative Empirical Studies [6.782635275179198]
我々は、事前登録された研究のための新しいプライバシー強化ワークフローを構築した。
また、適切な実行を技術的に強制する対応するプラットフォームであるPeQESを紹介します。
PeQESは、プライバシ強化された研究を可能にする最初のプラットフォームであり、研究プロトコルの完全性を確保し、参加者のデータの機密性を同時に保護する。
論文 参考訳(メタデータ) (2021-03-09T16:46:25Z) - An Accurate, Scalable and Verifiable Protocol for Federated
Differentially Private Averaging [0.0]
我々は、参加者に提供されるプライバシー保証と、悪意ある当事者の存在下での計算の正しさに関する課題に取り組む。
最初のコントリビューションはスケーラブルなプロトコルで、参加者はネットワークグラフのエッジに沿って関連するガウスノイズを交換する。
第2のコントリビューションでは,プロトコルの効率性とプライバシ保証を損なうことなく,計算の正確性を証明することができる。
論文 参考訳(メタデータ) (2020-06-12T14:21:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。