論文の概要: Hierarchical Information Enhancement Network for Cascade Prediction in Social Networks
- arxiv url: http://arxiv.org/abs/2403.15257v1
- Date: Fri, 22 Mar 2024 14:57:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 16:59:49.712335
- Title: Hierarchical Information Enhancement Network for Cascade Prediction in Social Networks
- Title(参考訳): ソーシャルネットワークにおけるカスケード予測のための階層型情報強調ネットワーク
- Authors: Fanrui Zhang, Jiawei Liu, Qiang Zhang, Xiaoling Zhu, Zheng-Jun Zha,
- Abstract要約: カスケード予測のための階層型情報拡張ネットワーク(HIENet)を提案する。
本手法では,基本カスケードシーケンス,ユーザソーシャルグラフ,サブカスケードグラフを統合フレームワークに統合する。
- 参考スコア(独自算出の注目度): 51.54002032659713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding information cascades in networks is a fundamental issue in numerous applications. Current researches often sample cascade information into several independent paths or subgraphs to learn a simple cascade representation. However, these approaches fail to exploit the hierarchical semantic associations between different modalities, limiting their predictive performance. In this work, we propose a novel Hierarchical Information Enhancement Network (HIENet) for cascade prediction. Our approach integrates fundamental cascade sequence, user social graphs, and sub-cascade graph into a unified framework. Specifically, HIENet utilizes DeepWalk to sample cascades information into a series of sequences. It then gathers path information between users to extract the social relationships of propagators. Additionally, we employ a time-stamped graph convolutional network to aggregate sub-cascade graph information effectively. Ultimately, we introduce a Multi-modal Cascade Transformer to powerfully fuse these clues, providing a comprehensive understanding of cascading process. Extensive experiments have demonstrated the effectiveness of the proposed method.
- Abstract(参考訳): ネットワークにおける情報カスケードの理解は多くのアプリケーションにおいて基本的な問題である。
現在の研究では、カスケード情報をいくつかの独立したパスやサブグラフにサンプリングして、単純なカスケード表現を学ぶことがしばしばある。
しかし、これらのアプローチは異なるモダリティ間の階層的セマンティックアソシエーションを利用することができず、予測性能を制限している。
本研究では,カスケード予測のための階層型情報拡張ネットワーク(HIENet)を提案する。
本手法では,基本カスケードシーケンス,ユーザソーシャルグラフ,サブカスケードグラフを統合フレームワークに統合する。
具体的には、HIENetはDeepWalkを使用してカスケード情報を一連のシーケンスにサンプリングする。
そして、ユーザ間の経路情報を収集し、プロパゲータの社会的関係を抽出する。
さらに、時間スタンプ付きグラフ畳み込みネットワークを用いて、サブカスケードグラフ情報を効果的に集約する。
最終的に、これらのヒントを効果的に融合させるマルチモーダルカスケード変換器を導入し、カスケードプロセスの包括的理解を提供する。
提案手法の有効性を実験により実証した。
関連論文リスト
- HierCas: Hierarchical Temporal Graph Attention Networks for Popularity Prediction in Information Cascades [25.564185461383655]
情報カスケードの人気予測は、偽ニュースの特定や正確なレコメンデーションなど、多くのアプリケーションにとって重要である。
従来の機能ベースのメソッドは、ドメイン固有であり、新しいドメインへの一般化性に欠ける手作りの機能に依存している。
動的グラフモデリング手法を用いて,カスケードグラフ全体で動作するカスケード人気予測 (HierCas) のための階層型時間グラフ注意ネットワークを提案する。
論文 参考訳(メタデータ) (2023-10-20T01:55:10Z) - Explicit Time Embedding Based Cascade Attention Network for Information
Popularity Prediction [12.645792211510276]
本稿では,大規模情報ネットワークのための新しい人気予測アーキテクチャとして,時間埋め込みに基づくカスケード注意ネットワーク(TCAN)を提案する。
TCANは、時間属性を一般的な時間埋め込みアプローチ(TE)を介してノード機能に統合し、カスケードグラフアテンションエンコーダ(CGAT)とカスケードシーケンスアテンションエンコーダ(CSAT)を使用して、カスケードグラフとカスケードシーケンスの表現を完全に学習する。
論文 参考訳(メタデータ) (2023-08-19T10:43:11Z) - CasCIFF: A Cross-Domain Information Fusion Framework Tailored for
Cascade Prediction in Social Networks [4.480256642939794]
クロスドメイン情報融合フレームワーク(CasCIFF)は、情報カスケード予測に最適化されている。
このフレームワークは、ユーザ埋め込みを堅牢にするために、マルチホップ近隣情報を利用する。
特に、CasCIFFは、ユーザ分類とカスケード予測のタスクをシームレスに統合されたフレームワークに統合します。
論文 参考訳(メタデータ) (2023-08-09T13:52:41Z) - Bandit Sampling for Multiplex Networks [8.771092194928674]
多数のレイヤを持つ多重ネットワーク上でのスケーラブルな学習アルゴリズムを提案する。
オンライン学習アルゴリズムは、トレーニング中に関連する情報を持つレイヤのみを集約するように、関連する隣のレイヤをサンプリングする方法を学ぶ。
合成シナリオと実世界のシナリオの両方に関する実験結果を示す。
論文 参考訳(メタデータ) (2022-02-08T03:26:34Z) - Routing with Self-Attention for Multimodal Capsule Networks [108.85007719132618]
我々は,カプセルの強度をマルチモーダル学習フレームワークの文脈で活用できる,新しいマルチモーダルカプセルネットワークを提案する。
カプセルを大規模入力データに適応させるために, カプセルを選択する自己保持機構による新たなルーティングを提案する。
これにより、ノイズの多いビデオデータによる堅牢なトレーニングだけでなく、従来のルーティング方法と比較してカプセルネットワークのサイズを拡大することが可能になる。
論文 参考訳(メタデータ) (2021-12-01T19:01:26Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
本稿では,時間グラフネットワークに基づく動的ネットワーク表現学習のための新しいアプローチを提案する。
評価のために、時間的ネットワーク埋め込みの評価のためのベンチマークパイプラインを提供する。
欧州の大手銀行が提供した実世界のダウンストリームグラフ機械学習タスクにおいて、我々のモデルの適用性と優れた性能を示す。
論文 参考訳(メタデータ) (2021-08-19T15:39:52Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
我々はスケルトンに基づく行動認識のためのシンプルで高度にモジュール化されたグラフ畳み込みネットワークアーキテクチャを設計する。
ネットワークは,空間的および時間的経路から多粒度情報を集約するビルディングブロックを繰り返すことで構築される。
論文 参考訳(メタデータ) (2020-11-26T14:43:04Z) - Deep Collaborative Embedding for information cascade prediction [58.90540495232209]
本稿では,情報カスケード予測のためのDeep Collaborative Embedding (DCE) と呼ばれる新しいモデルを提案する。
本稿では, 自動エンコーダを用いた協調埋め込みフレームワークを提案し, カスケード協調とノード協調によるノード埋め込みを学習する。
実世界のデータセットで行った大規模な実験の結果、我々のアプローチの有効性が検証された。
論文 参考訳(メタデータ) (2020-01-18T13:32:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。