論文の概要: (PASS) Visual Prompt Locates Good Structure Sparsity through a Recurrent HyperNetwork
- arxiv url: http://arxiv.org/abs/2407.17412v1
- Date: Wed, 24 Jul 2024 16:47:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 13:05:35.492430
- Title: (PASS) Visual Prompt Locates Good Structure Sparsity through a Recurrent HyperNetwork
- Title(参考訳): (PASS) Visual Promptは、リカレントハイパーネットワークを通して優れた構造空間をローカライズする
- Authors: Tianjin Huang, Fang Meng, Li Shen, Fan Liu, Yulong Pei, Mykola Pechenizkiy, Shiwei Liu, Tianlong Chen,
- Abstract要約: 大規模ニューラルネットワークは、視覚や言語処理など、さまざまな領域で顕著なパフォーマンスを示している。
構造的刈り込みの鍵となる問題のひとつは、チャネルの意義を見積もる方法である。
我々は,新しいアルゴリズムフレームワーク,すなわち textttPASS を提案する。
視覚的プロンプトとネットワーク重み統計の両方を入力とし、繰り返し的に層ワイドチャネル間隔を出力するように調整されたハイパーネットワークである。
- 参考スコア(独自算出の注目度): 60.889175951038496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale neural networks have demonstrated remarkable performance in different domains like vision and language processing, although at the cost of massive computation resources. As illustrated by compression literature, structural model pruning is a prominent algorithm to encourage model efficiency, thanks to its acceleration-friendly sparsity patterns. One of the key questions of structural pruning is how to estimate the channel significance. In parallel, work on data-centric AI has shown that prompting-based techniques enable impressive generalization of large language models across diverse downstream tasks. In this paper, we investigate a charming possibility - \textit{leveraging visual prompts to capture the channel importance and derive high-quality structural sparsity}. To this end, we propose a novel algorithmic framework, namely \texttt{PASS}. It is a tailored hyper-network to take both visual prompts and network weight statistics as input, and output layer-wise channel sparsity in a recurrent manner. Such designs consider the intrinsic channel dependency between layers. Comprehensive experiments across multiple network architectures and six datasets demonstrate the superiority of \texttt{PASS} in locating good structural sparsity. For example, at the same FLOPs level, \texttt{PASS} subnetworks achieve $1\%\sim 3\%$ better accuracy on Food101 dataset; or with a similar performance of $80\%$ accuracy, \texttt{PASS} subnetworks obtain $0.35\times$ more speedup than the baselines.
- Abstract(参考訳): 大規模ニューラルネットワークは、膨大な計算リソースを犠牲にしながらも、視覚や言語処理といったさまざまな領域で顕著なパフォーマンスを示している。
圧縮文献で説明されているように、構造的モデルプルーニングは、加速度にやさしいスパーシティパターンのおかげで、モデルの効率を高めるための顕著なアルゴリズムである。
構造的刈り込みの鍵となる問題のひとつは、チャネルの意義を見積もる方法である。
並行して、データ中心のAIの研究は、プロンプトベースのテクニックによって、さまざまな下流タスクにわたる大きな言語モデルの印象的な一般化が可能になることを示した。
本稿では、チャネルの重要性を捉え、高品質な構造空間を導出するための視覚的プロンプトを「textit{leveraging visual prompts」と呼ぶ魅力的な可能性について検討する。
そこで本研究では,新しいアルゴリズムフレームワークであるtexttt{PASS}を提案する。
視覚的プロンプトとネットワーク重み統計の両方を入力とし、繰り返し的に層ワイドチャネル間隔を出力するように調整されたハイパーネットワークである。
このような設計は、層間の固有のチャネル依存性を考慮に入れている。
複数のネットワークアーキテクチャと6つのデータセットにまたがる総合的な実験は、優れた構造的疎結合性を見つける上での \texttt{PASS} の優位性を実証している。
例えば、同じFLOPのレベルでは、 \texttt{PASS} subnetworksは、Food101データセットで1\%\sim 3\%$の精度を達成する。
関連論文リスト
- Neural Network Pruning by Gradient Descent [7.427858344638741]
我々は,Gumbel-Softmaxテクニックを取り入れた,新しい,かつ簡単なニューラルネットワークプルーニングフレームワークを提案する。
ネットワークパラメータの0.15%しか持たないMNISTデータセット上で、高い精度を維持しながら、例外的な圧縮能力を実証する。
我々は,ディープラーニングプルーニングと解釈可能な機械学習システム構築のための,有望な新たな道を開くと信じている。
論文 参考訳(メタデータ) (2023-11-21T11:12:03Z) - Network Pruning Spaces [12.692532576302426]
ウェイトプルーニングやフィルタプルーニングなどのネットワークプルーニング技術により、ほとんどの最先端のニューラルネットワークは、大幅な性能低下なしに加速できることが明らかになった。
この研究は、市販のディープラーニングライブラリやハードウェアで推論を高速化するフィルタプルーニングに焦点を当てている。
論文 参考訳(メタデータ) (2023-04-19T06:52:05Z) - Pushing the Efficiency Limit Using Structured Sparse Convolutions [82.31130122200578]
本稿では,画像の固有構造を利用して畳み込みフィルタのパラメータを削減する構造的スパース畳み込み(SSC)を提案する。
我々は、SSCが効率的なアーキテクチャにおける一般的なレイヤ(奥行き、グループ回り、ポイント回りの畳み込み)の一般化であることを示す。
SSCに基づくアーキテクチャは、CIFAR-10、CIFAR-100、Tiny-ImageNet、ImageNet分類ベンチマークのベースラインと比較して、最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-10-23T18:37:22Z) - Pruning-as-Search: Efficient Neural Architecture Search via Channel
Pruning and Structural Reparameterization [50.50023451369742]
プルーニング・アズ・サーチ(Pruning-as-Search、PaS)は、必要なサブネットワークを自動的に効率的に検索するエンドツーエンドのプルーニング手法である。
提案したアーキテクチャは,ImageNet-1000分類タスクにおいて,1.0%$ Top-1精度で先行技術より優れていた。
論文 参考訳(メタデータ) (2022-06-02T17:58:54Z) - Lightweight Single-Image Super-Resolution Network with Attentive
Auxiliary Feature Learning [73.75457731689858]
本稿では,SISR の注意補助機能 (A$2$F) に基づく計算効率が高く正確なネットワークを構築した。
大規模データセットを用いた実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-11-13T06:01:46Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
動的グラフネットワーク(DG-Net)は完全な有向非巡回グラフであり、ノードは畳み込みブロックを表し、エッジは接続経路を表す。
ネットワークの同じパスを使用する代わりに、DG-Netは各ノードの機能を動的に集約する。
論文 参考訳(メタデータ) (2020-10-02T16:50:26Z) - Growing Efficient Deep Networks by Structured Continuous Sparsification [34.7523496790944]
私たちは、トレーニングの過程でディープネットワークアーキテクチャを成長させるアプローチを開発します。
我々の手法は、小さくてシンプルなシードアーキテクチャから始まり、動的に成長し、層とフィルタの両方を熟成することができる。
ImageNetのベースラインであるResNet-50と比較すると、推論FLOPは49.7%、トレーニングFLOPは47.4%である。
論文 参考訳(メタデータ) (2020-07-30T10:03:47Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
本稿では,ネットワークの精度をFLOPの関数として考慮した,ネットワーク調整という新しいフレームワークを提案する。
標準画像分類データセットと幅広いベースネットワークの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2020-04-06T15:51:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。