Event Temporal Relation Extraction based on Retrieval-Augmented on LLMs
- URL: http://arxiv.org/abs/2403.15273v1
- Date: Fri, 22 Mar 2024 15:16:10 GMT
- Title: Event Temporal Relation Extraction based on Retrieval-Augmented on LLMs
- Authors: Xiaobin Zhang, Liangjun Zang, Qianwen Liu, Shuchong Wei, Songlin Hu,
- Abstract summary: Event temporal relation (TempRel) is a primary subject of the event relation extraction task.
Traditional manually designed templates struggle to extract precise temporal knowledge.
This paper introduces a novel retrieval-augmented TempRel extraction approach.
- Score: 21.888482292039956
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Event temporal relation (TempRel) is a primary subject of the event relation extraction task. However, the inherent ambiguity of TempRel increases the difficulty of the task. With the rise of prompt engineering, it is important to design effective prompt templates and verbalizers to extract relevant knowledge. The traditional manually designed templates struggle to extract precise temporal knowledge. This paper introduces a novel retrieval-augmented TempRel extraction approach, leveraging knowledge retrieved from large language models (LLMs) to enhance prompt templates and verbalizers. Our method capitalizes on the diverse capabilities of various LLMs to generate a wide array of ideas for template and verbalizer design. Our proposed method fully exploits the potential of LLMs for generation tasks and contributes more knowledge to our design. Empirical evaluations across three widely recognized datasets demonstrate the efficacy of our method in improving the performance of event temporal relation extraction tasks.
Related papers
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Document-Level Event Extraction with Definition-Driven ICL [0.0]
We propose an optimization strategy called "Definition-driven Document-level Event Extraction (DDEE)"
By adjusting the length of the prompt and enhancing the clarity of prompts, we have significantly improved the event extraction performance of Large Language Models (LLMs)
In addition, the introduction of structured methods and strict limiting conditions has improved the precision of event and argument role extraction.
arXiv Detail & Related papers (2024-08-10T14:24:09Z) - TemPrompt: Multi-Task Prompt Learning for Temporal Relation Extraction in RAG-based Crowdsourcing Systems [21.312052922118585]
Temporal relation extraction (TRE) aims to grasp the evolution of events or actions, and thus shape the workflow of associated tasks.
We propose a multi-task prompt learning framework for TRE (TemPrompt), incorporating prompt tuning and contrastive learning to tackle these issues.
arXiv Detail & Related papers (2024-06-21T01:52:37Z) - Decompose, Enrich, and Extract! Schema-aware Event Extraction using LLMs [45.83950260830323]
This work focuses on harnessing Large Language Models for automated Event Extraction.
It introduces a new method to address hallucination by decomposing the task into Event Detection and Event Argument Extraction.
arXiv Detail & Related papers (2024-06-03T06:55:10Z) - Temporal Grounding of Activities using Multimodal Large Language Models [0.0]
We evaluate the effectiveness of combining image-based and text-based large language models (LLMs) in a two-stage approach for temporal activity localization.
We demonstrate that our method outperforms existing video-based LLMs.
arXiv Detail & Related papers (2024-05-30T09:11:02Z) - Efficient Prompting Methods for Large Language Models: A Survey [50.171011917404485]
Prompting has become a mainstream paradigm for adapting large language models (LLMs) to specific natural language processing tasks.
This approach brings the additional computational burden of model inference and human effort to guide and control the behavior of LLMs.
We present the basic concepts of prompting, review the advances for efficient prompting, and highlight future research directions.
arXiv Detail & Related papers (2024-04-01T12:19:08Z) - Chain of History: Learning and Forecasting with LLMs for Temporal
Knowledge Graph Completion [24.545917737620197]
Temporal Knowledge Graph Completion (TKGC) is a complex task involving the prediction of missing event links at future timestamps.
This paper aims to provide a comprehensive perspective on harnessing the advantages of Large Language Models for reasoning in temporal knowledge graphs.
arXiv Detail & Related papers (2024-01-11T17:42:47Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - RET-LLM: Towards a General Read-Write Memory for Large Language Models [53.288356721954514]
RET-LLM is a novel framework that equips large language models with a general write-read memory unit.
Inspired by Davidsonian semantics theory, we extract and save knowledge in the form of triplets.
Our framework exhibits robust performance in handling temporal-based question answering tasks.
arXiv Detail & Related papers (2023-05-23T17:53:38Z) - Recitation-Augmented Language Models [85.30591349383849]
We show that RECITE is a powerful paradigm for knowledge-intensive NLP tasks.
Specifically, we show that by utilizing recitation as the intermediate step, a recite-and-answer scheme can achieve new state-of-the-art performance.
arXiv Detail & Related papers (2022-10-04T00:49:20Z) - Evidentiality-guided Generation for Knowledge-Intensive NLP Tasks [59.761411682238645]
Retrieval-augmented generation models have shown state-of-the-art performance across many knowledge-intensive NLP tasks.
We introduce a method to incorporate evidentiality of passages -- whether a passage contains correct evidence to support the output -- into training the generator.
arXiv Detail & Related papers (2021-12-16T08:18:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.