論文の概要: Specifying Genericity through Inclusiveness and Abstractness Continuous Scales
- arxiv url: http://arxiv.org/abs/2403.15278v2
- Date: Fri, 29 Mar 2024 22:43:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-02 13:35:12.039292
- Title: Specifying Genericity through Inclusiveness and Abstractness Continuous Scales
- Title(参考訳): 包括性と抽象性によるジェネリティーの特定
- Authors: Claudia Collacciani, Andrea Amelio Ravelli, Marianna Marcella Bolognesi,
- Abstract要約: 本稿では,自然言語における名詞句(NP)の詳細なモデリングのための新しいアノテーションフレームワークを提案する。
このフレームワークはシンプルで直感的に設計されており、専門家でないアノテータにもアクセスでき、クラウドソースのタスクに適している。
- 参考スコア(独自算出の注目度): 1.024113475677323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a novel annotation framework for the fine-grained modeling of Noun Phrases' (NPs) genericity in natural language. The framework is designed to be simple and intuitive, making it accessible to non-expert annotators and suitable for crowd-sourced tasks. Drawing from theoretical and cognitive literature on genericity, this framework is grounded in established linguistic theory. Through a pilot study, we created a small but crucial annotated dataset of 324 sentences, serving as a foundation for future research. To validate our approach, we conducted an evaluation comparing our continuous annotations with existing binary annotations on the same dataset, demonstrating the framework's effectiveness in capturing nuanced aspects of genericity. Our work offers a practical resource for linguists, providing a first annotated dataset and an annotation scheme designed to build real-language datasets that can be used in studies on the semantics of genericity, and NLP practitioners, contributing to the development of commonsense knowledge repositories valuable in enhancing various NLP applications.
- Abstract(参考訳): 本稿では,自然言語における名詞句(NP)の詳細なモデリングのための新しいアノテーションフレームワークを提案する。
このフレームワークはシンプルで直感的に設計されており、専門家でないアノテータにもアクセスでき、クラウドソースのタスクに適している。
一般性に関する理論的・認知的な文献から、この枠組みは確立された言語理論に根ざしている。
パイロットスタディを通じて、324文の小さなが重要な注釈付きデータセットを作成し、将来の研究の基盤となった。
提案手法の有効性を検証するため,同データセット上の既存のバイナリアノテーションと連続アノテーションを比較した。
我々の研究は、言語学者のための実践的なリソースを提供し、汎用性のセマンティクスの研究に使用可能な、最初の注釈付きデータセットと実際のデータセットを構築するためのアノテーションスキームを提供し、様々なNLPアプリケーションの拡張に有用なコモンセンス知識リポジトリの開発に寄与している。
関連論文リスト
- Prompting Encoder Models for Zero-Shot Classification: A Cross-Domain Study in Italian [75.94354349994576]
本稿では,より小型のドメイン固有エンコーダ LM と,特殊なコンテキストにおける性能向上手法の併用の可能性について検討する。
本研究は, イタリアの官僚的・法的言語に焦点をあて, 汎用モデルと事前学習型エンコーダのみのモデルの両方を実験する。
その結果, 事前学習したモデルでは, 一般知識の頑健性が低下する可能性があるが, ドメイン固有のタスクに対して, ゼロショット設定においても, より優れた適応性を示すことがわかった。
論文 参考訳(メタデータ) (2024-07-30T08:50:16Z) - GPTs Are Multilingual Annotators for Sequence Generation Tasks [11.59128394819439]
本研究では,大規模言語モデルを用いた自律アノテーション手法を提案する。
提案手法はコスト効率だけでなく,低リソース言語アノテーションにも適用可能であることを示す。
論文 参考訳(メタデータ) (2024-02-08T09:44:02Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
本稿では,大規模言語モデルが提供するリッチな文脈情報と意味表現を利用して行動グラフを解析する新しいフレームワークを提案する。
この機能を利用することで、個々のユーザに対してパーソナライズされた、正確なジョブレコメンデーションが可能になる。
論文 参考訳(メタデータ) (2023-07-10T11:29:41Z) - Extended High Utility Pattern Mining: An Answer Set Programming Based
Framework and Applications [0.0]
ASPのようなルールベースの言語は、パターンユーティリティを評価するためのユーザが提供する基準を指定するのに適しているようだ。
本稿では,従来の文献では考慮されていない実用基準の新たなクラスを実現するためのフレームワークを提案する。
新型コロナウイルス患者のICU入院を予測するための革新的な方法の定義のために,ビルディングブロックとして活用する。
論文 参考訳(メタデータ) (2023-03-23T11:42:57Z) - Topics as Entity Clusters: Entity-based Topics from Large Language Models and Graph Neural Networks [0.6486052012623045]
本稿では,エンティティのバイモーダルベクトル表現を用いたトピッククラスタリング手法を提案する。
我々のアプローチは、最先端のモデルと比較してエンティティを扱うのに適している。
論文 参考訳(メタデータ) (2023-01-06T10:54:54Z) - An Inclusive Notion of Text [69.36678873492373]
テキストの概念の明確さは再現可能で一般化可能なNLPにとって不可欠である,と我々は主張する。
言語的および非言語的要素の2層分類を導入し,NLPモデリングに使用することができる。
論文 参考訳(メタデータ) (2022-11-10T14:26:43Z) - Convex Polytope Modelling for Unsupervised Derivation of Semantic
Structure for Data-efficient Natural Language Understanding [31.888489552069146]
Convex-Polytopic-Modelベースのフレームワークは、生のダイアログコーパスを利用して意味パターンを自動的に抽出する大きな可能性を示している。
このフレームワークは,コーパスのセマンティックフレーム関連機能を活用し,発話の基盤となるセマンティック構造を明らかにし,最小限の監視で最先端のNLUモデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-01-25T19:12:44Z) - A Latent-Variable Model for Intrinsic Probing [93.62808331764072]
固有プローブ構築のための新しい潜在変数定式化を提案する。
我々は、事前訓練された表現が言語間交互に絡み合ったモルフォシンタクスの概念を発達させる経験的証拠を見出した。
論文 参考訳(メタデータ) (2022-01-20T15:01:12Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
シンタックスとは異なり、セマンティクスは今日の事前訓練モデルによって表面化されないことを示す。
次に、畳み込みグラフエンコーダを使用して、タスク固有の微調整にセマンティック解析を明示的に組み込む。
論文 参考訳(メタデータ) (2020-12-10T01:27:24Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。