Theory of quasiparticle-induced errors in driven-dissipative Schrödinger cat qubits
- URL: http://arxiv.org/abs/2403.15310v2
- Date: Thu, 11 Jul 2024 14:26:16 GMT
- Title: Theory of quasiparticle-induced errors in driven-dissipative Schrödinger cat qubits
- Authors: Kirill Dubovitskii, Denis M. Basko, Julia S. Meyer, Manuel Houzet,
- Abstract summary: We discuss the effects of residual Bogolyubov quasiparticles in Schr"odinger cat qubits.
The Schr"odinger cat qubits are operated under non-equilibrium conditions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the mechanisms of qubit decoherence is a crucial prerequisite for improving the qubit performance. In this work we discuss the effects of residual Bogolyubov quasiparticles in Schr\"odinger cat qubits, either of the dissipative or Kerr type. The major difference from previous studies of quasiparticles in superconducting qubits is that the Schr\"odinger cat qubits are operated under non-equilibrium conditions. Indeed, an external microwave drive is needed to stabilize "cat states", which are superpositions of coherent degenerate eigenstates of an effective stationary Lindbladian in the rotating frame. We present a microscopic derivation of the master equation for cat qubits and express the effect of the quasiparticles as dissipators acting on the density matrix of the cat qubit. This enables us to determine the conditions under which the quasiparticles give a substantial contribution to the qubit errors.
Related papers
- Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - A critical Schr\"odinger cat qubit [0.0]
In cat qubits, an engineered dissipation scheme combining two-photon drive and loss has been used to stabilize this manifold.
In Kerr cat qubits, where highly-performing gates can be engineered, two-photon drive and Kerr nonlinearity cooperate to confine the system.
We show that large detunings and small, but non-negligible, two-photon loss rates are fundamental to achieve optimal performance.
arXiv Detail & Related papers (2022-08-09T17:44:00Z) - Engineering superconducting qubits to reduce quasiparticles and charge
noise [14.613106897690752]
We experimentally demonstrate how to control quasiparticle generation by downsizing the qubit.
We shape the electromagnetic environment of the qubit above the superconducting gap, inhibiting quasiparticle poisoning.
Our findings support the hypothesis that quasiparticle generation is dominated by the breaking of Cooper pairs at the junction.
arXiv Detail & Related papers (2022-02-03T06:40:21Z) - Combined Dissipative and Hamiltonian Confinement of Cat Qubits [0.0]
Cat qubits feature an exponential error bias inherited from their non-local encoding in the phase space of a quantum harmonic oscillator.
We introduce a new combined dissipative and Hamiltonian confinement scheme based on two-photon dissipation together with a Two-Photon Exchange (TPE) Hamiltonian.
We demonstrate fast and bias-preserving gates with drastically improved performance compared to dissipative or Hamiltonian schemes.
arXiv Detail & Related papers (2021-12-10T13:55:28Z) - The quantum Otto cycle in a superconducting cavity in the non-adiabatic
regime [62.997667081978825]
We analyze the efficiency of the quantum Otto cycle applied to a superconducting cavity.
It is shown that, in a non-adiabatic regime, the efficiency of the quantum cycle is affected by the dynamical Casimir effect.
arXiv Detail & Related papers (2021-11-30T11:47:33Z) - Schr\"{o}dinger cat states of a macroscopic charged particle co-trapped
with an ion [0.0]
We investigate the feasibility of observing matter-wave interference of a micron-sized charged particle by putting it into a quantum superposition of states with a distinguishable separation.
An atomic ion is confined in a linear Paul trap along with the massive charged particle so that we can make use of the toolbox of experimental techniques developed to control quantum states of trapped ions.
arXiv Detail & Related papers (2021-11-22T23:27:13Z) - Stabilizing a Bosonic Qubit using Colored Dissipation [56.16090169079105]
Some protected qubits (e.g., 0-$pi$ qubit and Kerr cat qubit) are stabilized by Hamiltonians.
We propose a scheme for dissipatively stabilizing an energy-gap-protected qubit using colored (i.e., frequency-selective) dissipation.
arXiv Detail & Related papers (2021-07-19T23:36:48Z) - Intrinsic mechanisms for drive-dependent Purcell decay in
superconducting quantum circuits [68.8204255655161]
We find that in a wide range of settings, the cavity-qubit detuning controls whether a non-zero photonic population increases or decreases qubit decay Purcell.
Our method combines insights from a Keldysh treatment of the system, and Lindblad theory.
arXiv Detail & Related papers (2021-06-09T16:21:31Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.