Collaborative AI Teaming in Unknown Environments via Active Goal Deduction
- URL: http://arxiv.org/abs/2403.15341v1
- Date: Fri, 22 Mar 2024 16:50:56 GMT
- Title: Collaborative AI Teaming in Unknown Environments via Active Goal Deduction
- Authors: Zuyuan Zhang, Hanhan Zhou, Mahdi Imani, Taeyoung Lee, Tian Lan,
- Abstract summary: Existing approaches for training collaborative agents often require defined and known reward signals.
We propose teaming with unknown agents framework, which leverages kernel density Bayesian inverse learning method for active goal deduction.
We prove that unbiased reward estimates in our framework are sufficient for optimal teaming with unknown agents.
- Score: 22.842601384114058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advancements of artificial intelligence (AI), we're seeing more scenarios that require AI to work closely with other agents, whose goals and strategies might not be known beforehand. However, existing approaches for training collaborative agents often require defined and known reward signals and cannot address the problem of teaming with unknown agents that often have latent objectives/rewards. In response to this challenge, we propose teaming with unknown agents framework, which leverages kernel density Bayesian inverse learning method for active goal deduction and utilizes pre-trained, goal-conditioned policies to enable zero-shot policy adaptation. We prove that unbiased reward estimates in our framework are sufficient for optimal teaming with unknown agents. We further evaluate the framework of redesigned multi-agent particle and StarCraft II micromanagement environments with diverse unknown agents of different behaviors/rewards. Empirical results demonstrate that our framework significantly advances the teaming performance of AI and unknown agents in a wide range of collaborative scenarios.
Related papers
- Joint Intrinsic Motivation for Coordinated Exploration in Multi-Agent
Deep Reinforcement Learning [0.0]
We propose an approach for rewarding strategies where agents collectively exhibit novel behaviors.
Jim rewards joint trajectories based on a centralized measure of novelty designed to function in continuous environments.
Results show that joint exploration is crucial for solving tasks where the optimal strategy requires a high level of coordination.
arXiv Detail & Related papers (2024-02-06T13:02:00Z) - DCIR: Dynamic Consistency Intrinsic Reward for Multi-Agent Reinforcement
Learning [84.22561239481901]
We propose a new approach that enables agents to learn whether their behaviors should be consistent with that of other agents.
We evaluate DCIR in multiple environments including Multi-agent Particle, Google Research Football and StarCraft II Micromanagement.
arXiv Detail & Related papers (2023-12-10T06:03:57Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - Emergent collective intelligence from massive-agent cooperation and
competition [19.75488604218965]
We study the emergence of artificial collective intelligence through massive-agent reinforcement learning.
We propose a new massive-agent reinforcement learning environment, Lux, where dynamic and massive agents in two teams scramble for limited resources and fight off the darkness.
arXiv Detail & Related papers (2023-01-04T13:23:12Z) - Robust Reinforcement Learning via Genetic Curriculum [5.421464476555662]
Genetic curriculum is an algorithm that automatically identifies scenarios in which the agent currently fails and generates an associated curriculum.
Our empirical studies show improvement in robustness over the existing state of the art algorithms, providing training curricula that result in agents being 2 - 8x times less likely to fail.
arXiv Detail & Related papers (2022-02-17T01:14:20Z) - Conditional Imitation Learning for Multi-Agent Games [89.897635970366]
We study the problem of conditional multi-agent imitation learning, where we have access to joint trajectory demonstrations at training time.
We propose a novel approach to address the difficulties of scalability and data scarcity.
Our model learns a low-rank subspace over ego and partner agent strategies, then infers and adapts to a new partner strategy by interpolating in the subspace.
arXiv Detail & Related papers (2022-01-05T04:40:13Z) - Influence-based Reinforcement Learning for Intrinsically-motivated
Agents [0.0]
We present an algorithmic framework of two reinforcement learning agents each with a different objective.
We introduce a novel function approximation approach to assess the influence $F$ of a certain policy on others.
Our method was evaluated on the suite of OpenAI gym tasks as well as cooperative and mixed scenarios.
arXiv Detail & Related papers (2021-08-28T05:36:10Z) - Cooperative Exploration for Multi-Agent Deep Reinforcement Learning [127.4746863307944]
We propose cooperative multi-agent exploration (CMAE) for deep reinforcement learning.
The goal is selected from multiple projected state spaces via a normalized entropy-based technique.
We demonstrate that CMAE consistently outperforms baselines on various tasks.
arXiv Detail & Related papers (2021-07-23T20:06:32Z) - Explore and Control with Adversarial Surprise [78.41972292110967]
Reinforcement learning (RL) provides a framework for learning goal-directed policies given user-specified rewards.
We propose a new unsupervised RL technique based on an adversarial game which pits two policies against each other to compete over the amount of surprise an RL agent experiences.
We show that our method leads to the emergence of complex skills by exhibiting clear phase transitions.
arXiv Detail & Related papers (2021-07-12T17:58:40Z) - Automatic Curriculum Learning through Value Disagreement [95.19299356298876]
Continually solving new, unsolved tasks is the key to learning diverse behaviors.
In the multi-task domain, where an agent needs to reach multiple goals, the choice of training goals can largely affect sample efficiency.
We propose setting up an automatic curriculum for goals that the agent needs to solve.
We evaluate our method across 13 multi-goal robotic tasks and 5 navigation tasks, and demonstrate performance gains over current state-of-the-art methods.
arXiv Detail & Related papers (2020-06-17T03:58:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.