Deep Reinforcement Learning Agents are not even close to Human Intelligence
- URL: http://arxiv.org/abs/2505.21731v1
- Date: Tue, 27 May 2025 20:21:46 GMT
- Title: Deep Reinforcement Learning Agents are not even close to Human Intelligence
- Authors: Quentin Delfosse, Jannis Blüml, Fabian Tatai, Théo Vincent, Bjarne Gregori, Elisabeth Dillies, Jan Peters, Constantin Rothkopf, Kristian Kersting,
- Abstract summary: Deep reinforcement learning (RL) agents achieve impressive results in a wide variety of tasks, but they lack zero-shot adaptation capabilities.<n>We introduce HackAtari, a set of task variations of the Arcade Learning Environments.<n>We use it to demonstrate that, contrary to humans, RL agents systematically exhibit huge performance drops on simpler versions of their training tasks.
- Score: 25.836584192349907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep reinforcement learning (RL) agents achieve impressive results in a wide variety of tasks, but they lack zero-shot adaptation capabilities. While most robustness evaluations focus on tasks complexifications, for which human also struggle to maintain performances, no evaluation has been performed on tasks simplifications. To tackle this issue, we introduce HackAtari, a set of task variations of the Arcade Learning Environments. We use it to demonstrate that, contrary to humans, RL agents systematically exhibit huge performance drops on simpler versions of their training tasks, uncovering agents' consistent reliance on shortcuts. Our analysis across multiple algorithms and architectures highlights the persistent gap between RL agents and human behavioral intelligence, underscoring the need for new benchmarks and methodologies that enforce systematic generalization testing beyond static evaluation protocols. Training and testing in the same environment is not enough to obtain agents equipped with human-like intelligence.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.<n>We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Harnessing Pre-trained Generalist Agents for Software Engineering Tasks [13.733085206098258]
Deep reinforcement learning (DRL) has been successfully used for automation in complex tasks such as game testing and solving the job-shop scheduling problem.
Specialist DRL agents suffer from a lack of generalizability to other tasks and need substantial time to be developed and re-trained effectively.
Recently, DRL researchers have begun to develop generalist agents, able to learn a policy from various environments and capable of achieving performances similar to or better than specialist agents in new tasks.
arXiv Detail & Related papers (2023-12-24T18:39:58Z) - Primitive Skill-based Robot Learning from Human Evaluative Feedback [28.046559859978597]
Reinforcement learning algorithms face challenges when dealing with long-horizon robot manipulation tasks in real-world environments.
We propose a novel framework, SEED, which leverages two approaches: reinforcement learning from human feedback (RLHF) and primitive skill-based reinforcement learning.
Our results show that SEED significantly outperforms state-of-the-art RL algorithms in sample efficiency and safety.
arXiv Detail & Related papers (2023-07-28T20:48:30Z) - Efficient Meta Reinforcement Learning for Preference-based Fast
Adaptation [17.165083095799712]
We study the problem of few-shot adaptation in the context of human-in-the-loop reinforcement learning.
We develop a meta-RL algorithm that enables fast policy adaptation with preference-based feedback.
arXiv Detail & Related papers (2022-11-20T03:55:09Z) - Robust Reinforcement Learning via Genetic Curriculum [5.421464476555662]
Genetic curriculum is an algorithm that automatically identifies scenarios in which the agent currently fails and generates an associated curriculum.
Our empirical studies show improvement in robustness over the existing state of the art algorithms, providing training curricula that result in agents being 2 - 8x times less likely to fail.
arXiv Detail & Related papers (2022-02-17T01:14:20Z) - Autonomous Reinforcement Learning: Formalism and Benchmarking [106.25788536376007]
Real-world embodied learning, such as that performed by humans and animals, is situated in a continual, non-episodic world.
Common benchmark tasks in RL are episodic, with the environment resetting between trials to provide the agent with multiple attempts.
This discrepancy presents a major challenge when attempting to take RL algorithms developed for episodic simulated environments and run them on real-world platforms.
arXiv Detail & Related papers (2021-12-17T16:28:06Z) - URLB: Unsupervised Reinforcement Learning Benchmark [82.36060735454647]
We introduce the Unsupervised Reinforcement Learning Benchmark (URLB)
URLB consists of two phases: reward-free pre-training and downstream task adaptation with extrinsic rewards.
We provide twelve continuous control tasks from three domains for evaluation and open-source code for eight leading unsupervised RL methods.
arXiv Detail & Related papers (2021-10-28T15:07:01Z) - Persistent Reinforcement Learning via Subgoal Curricula [114.83989499740193]
Value-accelerated Persistent Reinforcement Learning (VaPRL) generates a curriculum of initial states.
VaPRL reduces the interventions required by three orders of magnitude compared to episodic reinforcement learning.
arXiv Detail & Related papers (2021-07-27T16:39:45Z) - PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via
Relabeling Experience and Unsupervised Pre-training [94.87393610927812]
We present an off-policy, interactive reinforcement learning algorithm that capitalizes on the strengths of both feedback and off-policy learning.
We demonstrate that our approach is capable of learning tasks of higher complexity than previously considered by human-in-the-loop methods.
arXiv Detail & Related papers (2021-06-09T14:10:50Z) - Planning to Explore via Self-Supervised World Models [120.31359262226758]
Plan2Explore is a self-supervised reinforcement learning agent.
We present a new approach to self-supervised exploration and fast adaptation to new tasks.
Without any training supervision or task-specific interaction, Plan2Explore outperforms prior self-supervised exploration methods.
arXiv Detail & Related papers (2020-05-12T17:59:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.