論文の概要: Enhanced Imaging of Electronic Hot Spots Using Quantum Squeezed Light
- arxiv url: http://arxiv.org/abs/2403.15345v1
- Date: Fri, 22 Mar 2024 16:55:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 16:40:19.782429
- Title: Enhanced Imaging of Electronic Hot Spots Using Quantum Squeezed Light
- Title(参考訳): 量子スクイーズ光を用いた電子ホットスポットの高感度イメージング
- Authors: Haechan An, Ali Najjar Amiri, Dominic P. Goronzy, David A. Garcia Wetten, Michael J. Bedzyk, Ali Shakouri, Mark C. Hersam, Mahdi Hosseini,
- Abstract要約: 熱反射イメージングは、ワイヤや半導体材料の熱の正確な時間的および空間的イメージングを行うために使用されている。
我々は、古典的アプローチのショットノイズ限界を超越して、マイクロワイヤ上で熱反射イメージングを行うために量子圧縮光を適用した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting electronic hot spots is important for understanding the heat dissipation and thermal management of electronic and semiconductor devices. Optical thermoreflective imaging is being used to perform precise temporal and spatial imaging of heat on wires and semiconductor materials. We apply quantum squeezed light to perform thermoreflective imaging on micro-wires, surpassing the shot-noise limit of classical approaches. We obtain a far-field temperature sensing accuracy of 42 mK after 50 ms of averaging and show that a $256\times256$ pixel image can be constructed with such sensitivity in 10 minutes. We can further obtain single-shot temperature sensing of 1.6 K after only 10 $\mathrm{\mu s}$ of averaging enabling dynamical study of heat dissipation. Not only do the quantum images provide accurate spatio-temporal information about heat distribution, but the measure of quantum correlation provides additional information, inaccessible by classical techniques, that can lead to a better understanding of the dynamics. We apply the technique to both Al and Nb microwires and discuss the applications of the technique in studying electron dynamics at low temperatures.
- Abstract(参考訳): 電子ホットスポットの検出は、電子・半導体デバイスの放熱と熱管理を理解する上で重要である。
光熱反射イメージングは、ワイヤや半導体材料の熱の正確な時間的・空間的イメージングに使われている。
我々は、古典的アプローチのショットノイズ限界を超越して、マイクロワイヤ上で熱反射イメージングを行うために量子圧縮光を適用した。
平均50ミリ秒後の遠距離場温度感知精度は42mKであり,256\times256$ピクセル画像が10分で構築可能であることを示す。
さらに,10ドル以上で1.6Kの単発温度検出が可能となり,放熱の動的研究が可能となった。
量子画像は、熱分布に関する正確な時空間情報を提供するだけでなく、量子相関の測度は、古典的な手法ではアクセスできない追加情報を提供する。
本手法をAlおよびNbマイクロワイヤの両方に適用し,低温での電子動力学研究への応用について検討する。
関連論文リスト
- Overcoming the Thermal-Noise Limit of Room-Temperature Microwave Measurements by Cavity Pre-cooling with a Low-Noise Amplifier. Application to Time-resolved Electron Paramagnetic Resonance [0.34530027457862006]
空洞前冷却(CPC)は、測定を行う直前に、室温でマイクロ波空洞の電磁モードを占有する有害な熱光子の大部分が除去される。
HEMTをベースとした商用低雑音増幅器 (LNA) の入力を再利用し, 一時的に空洞に過結合した光子吸収型コールドロードとして機能する。
概念実証実験では、モニターされたマイクロ波モードのノイズ温度が室温以下から108Kに低下する。
論文 参考訳(メタデータ) (2024-08-09T22:43:29Z) - Room temperature single-photon terahertz detection with thermal Rydberg
atoms [8.625885970682884]
単一光子テラヘルツ(THz)検出は様々な分野において最も要求の高い技術の一つであり、多くのブレークスルーをもたらす可能性がある。
ここでは, 熱Rydberg原子蒸気中の非線形波の混合に基づく室温THz検出器を, 単光子レベルで初めて実証する。
論文 参考訳(メタデータ) (2024-03-09T08:30:35Z) - Electron cooling in graphene thermal transistors [0.0]
グラフェン熱トランジスタにおける電子ガスの能動的冷却と冷却を実証した。
プロトタイプは、約450mKの浴槽温度で約15mKのグラフェン中の電子の最高冷却を達成した。
我々のグラフェン熱トランジスタは超伝導ハイブリッド量子技術に応用できるかもしれない。
論文 参考訳(メタデータ) (2024-02-13T17:10:45Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
超伝導量子ビットに基づくデバイスは、量子非劣化測定(QND)による数GHz単一光子の検出に成功している。
本研究では,Qub-ITの超伝導量子ビットデバイスの実現に向けた状況を示す。
論文 参考訳(メタデータ) (2023-10-08T17:11:42Z) - A highly-sensitive broadband superconducting thermoelectric
single-photon detector [62.997667081978825]
熱電検出器(TED)は、単一光子の吸収による有限温度差を開回路熱電圧に変換する。
TEDでは、選択した設計や素材に応じて、約15GHzから約150Hzの周波数の単一光子を公開できる。
論文 参考訳(メタデータ) (2023-02-06T17:08:36Z) - Phononically shielded photonic-crystal mirror membranes for cavity
quantum optomechanics [48.7576911714538]
高い機械的品質係数を有する反射性サブ波長薄膜共振器を提案する。
膜が1つの終端ミラーを形成するFabry-Perot型光学キャビティを構築した。
室温からmKモード温度への最適サイドバンド冷却を実証した。
論文 参考訳(メタデータ) (2022-12-23T04:53:04Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
マイクロ波と光子の間の周波数変換は、超伝導量子プロセッサ間のリンクを作るための鍵となる技術である。
本稿では, 長コヒーレンス時間超伝導電波周波数(SRF)キャビティに基づくマイクロ波光プラットフォームを提案する。
2つのリモート量子システム間の密接な絡み合い発生の忠実さは、低マイクロ波損失により向上することを示す。
論文 参考訳(メタデータ) (2022-06-30T17:57:37Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
マイクロ波領域の超伝導回路は 未だにそのような装置を欠いている
共振導波路に結合した8量子ビットからなる超伝導メタマテリアルにおいて、電磁波の減速を実証した。
本研究は, 超伝導回路の高柔軟性を実証し, カスタムバンド構造を実現することを目的とした。
論文 参考訳(メタデータ) (2022-02-14T20:55:10Z) - Revealing the ultra-sensitive calorimetric properties of
supercon-ducting magic-angle twisted bilayer graphene [0.0]
魔法の角をねじった二層グラフェン(MATBG)1の超伝導相は、異常な熱的性質を持つと予測されている。
超伝導MATBG素子の温度依存性臨界電流Icをモニタリングすることにより,超感度のカロリー測定特性を明らかにする。
これは超伝導MATBGを超感度光子検出のための革命活性物質として確立する。
論文 参考訳(メタデータ) (2021-11-16T19:13:20Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
捕捉イオンを用いた最適なフォノン温度推定のための断熱法を提案する。
フォノンの熱分布に関する関連する情報は、スピンの集合的な自由度に伝達することができる。
それぞれの熱状態確率は、各スピン励起構成に近似的にマッピングされることを示す。
論文 参考訳(メタデータ) (2020-12-16T12:58:08Z) - Primary thermometry of propagating microwaves in the quantum regime [0.0]
トランスモン型超伝導回路を用いてマイクロ波伝播の熱測定を実験的に提案する。
私たちのデバイスは継続的に動作し、感度は10-4$ Photons/$sqrtmboxHz$、帯域幅は40MHzまで低下します。
この熱測定スキームは、低温マイクロ波セットアップのベンチマークと評価、ハイブリッド量子系の温度測定、量子熱力学に応用できる。
論文 参考訳(メタデータ) (2020-03-30T14:48:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。