CapsF: Capsule Fusion for Extracting psychiatric stressors for suicide from twitter
- URL: http://arxiv.org/abs/2403.15391v1
- Date: Wed, 7 Feb 2024 13:41:22 GMT
- Title: CapsF: Capsule Fusion for Extracting psychiatric stressors for suicide from twitter
- Authors: Mohammad Ali Dadgostarnia, Ramin Mousa, Saba Hesaraki,
- Abstract summary: This study aims to investigate the techniques of detecting psychological stress related to suicide from Persian tweets using learning based methods.
The proposed capsule based approach achieved a binary classification accuracy of 0.83.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Along with factors such as cancer, blood pressure, street accidents and stroke, suicide has been one of Iran main causes of death. One of the main reasons for suicide is psychological stressors. Identifying psychological stressors in an at risk population can help in the early prevention of suicidal and suicidal behaviours. In recent years, the widespread popularity and flow of real time information sharing of social media have allowed for potential early intervention in large scale and even small scale populations. However, some automated approaches to extract psychiatric stressors from Twitter have been presented, but most of this research has been for non Persian languages. This study aims to investigate the techniques of detecting psychological stress related to suicide from Persian tweets using learning based methods. The proposed capsule based approach achieved a binary classification accuracy of 0.83.
Related papers
- An Exploratory Deep Learning Approach for Predicting Subsequent Suicidal Acts in Chinese Psychological Support Hotlines [13.59130559079134]
The accuracy of scale-based predictive methods for suicide risk assessment can vary widely depending on the expertise of the operator.
This study is the first to apply deep learning to long-term speech data to predict suicide risk in China.
arXiv Detail & Related papers (2024-08-29T11:51:41Z) - Predicting suicidal behavior among Indian adults using childhood trauma,
mental health questionnaires and machine learning cascade ensembles [0.0]
Among young adults, suicide is India's leading cause of death, accounting for an alarming national suicide rate of around 16%.
In recent years, machine learning algorithms have emerged to predict suicidal behavior using various behavioral traits.
In this study, different machine learning algorithms and ensembles were developed to predict suicide behavior based on childhood trauma, different mental health parameters, and other behavioral factors.
arXiv Detail & Related papers (2024-01-31T09:49:46Z) - CautionSuicide: A Deep Learning Based Approach for Detecting Suicidal
Ideation in Real Time Chatbot Conversation [0.0]
Early detection of suicidal ideations can help to prevent suicide occurrence.
We propose a novel, simple deep learning-based model to detect suicidal ideations in digital content.
arXiv Detail & Related papers (2024-01-02T04:14:16Z) - Handwriting and Drawing for Depression Detection: A Preliminary Study [53.11777541341063]
Short-term covid effects on mental health were a significant increase in anxiety and depressive symptoms.
The aim of this study is to use a new tool, the online handwriting and drawing analysis, to discriminate between healthy individuals and depressed patients.
arXiv Detail & Related papers (2023-02-05T22:33:49Z) - Mental Illness Classification on Social Media Texts using Deep Learning
and Transfer Learning [55.653944436488786]
According to the World health organization (WHO), approximately 450 million people are affected.
Mental illnesses, such as depression, anxiety, bipolar disorder, ADHD, and PTSD.
This study analyzes unstructured user data on Reddit platform and classifies five common mental illnesses: depression, anxiety, bipolar disorder, ADHD, and PTSD.
arXiv Detail & Related papers (2022-07-03T11:33:52Z) - Quantifying the Suicidal Tendency on Social Media: A Survey [0.0]
Suicide is one of the leading cause of premature but preventable death.
Recent studies have shown that mining social media data has helped in quantifying the suicidal tendency of users at risk.
This manuscript elucidates the taxonomy of mental healthcare and highlights some recent attempts in examining the potential of quantifying suicidal tendency on social media data.
arXiv Detail & Related papers (2021-10-04T12:26:14Z) - Building and Using Personal Knowledge Graph to Improve Suicidal Ideation
Detection on Social Media [4.769234388745917]
We build and unify a high-level suicide-oriented knowledge graph with deep neural networks for suicidal ideation detection on social media.
We show that the social media-based suicidal ideation detection can achieve over 93% accuracy.
Under these categories, posted text, stress level, stress duration, posted image, and ruminant thinking contribute to one's suicidal ideation detection.
arXiv Detail & Related papers (2020-12-16T18:09:32Z) - Understanding the Hoarding Behaviors during the COVID-19 Pandemic using
Large Scale Social Media Data [77.34726150561087]
We analyze the hoarding and anti-hoarding patterns of over 42,000 unique Twitter users in the United States from March 1 to April 30, 2020.
We find the percentage of females in both hoarding and anti-hoarding groups is higher than that of the general Twitter user population.
The LIWC anxiety mean for the hoarding-related tweets is significantly higher than the baseline Twitter anxiety mean.
arXiv Detail & Related papers (2020-10-15T16:02:25Z) - Anxiety Detection Leveraging Mobile Passive Sensing [53.11661460916551]
Anxiety disorders are the most common class of psychiatric problems affecting both children and adults.
Leveraging passive and unobtrusive data collection from smartphones could be a viable alternative to classical methods.
eWellness is an experimental mobile application designed to track a full-suite of sensor and user-log data off an individual's device in a continuous and passive manner.
arXiv Detail & Related papers (2020-08-09T20:22:52Z) - Detecting Perceived Emotions in Hurricane Disasters [62.760131661847986]
We introduce HurricaneEmo, an emotion dataset of 15,000 English tweets spanning three hurricanes: Harvey, Irma, and Maria.
We present a comprehensive study of fine-grained emotions and propose classification tasks to discriminate between coarse-grained emotion groups.
arXiv Detail & Related papers (2020-04-29T16:17:49Z) - Suicidal Ideation and Mental Disorder Detection with Attentive Relation
Networks [43.2802002858859]
This paper enhances text representation with lexicon-based sentiment scores and latent topics.
It proposes using relation networks to detect suicidal ideation and mental disorders with related risk indicators.
arXiv Detail & Related papers (2020-04-16T11:18:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.