論文の概要: "Model Cards for Model Reporting" in 2024: Reclassifying Category of Ethical Considerations in Terms of Trustworthiness and Risk Management
- arxiv url: http://arxiv.org/abs/2403.15394v1
- Date: Thu, 15 Feb 2024 14:56:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 03:13:49.310369
- Title: "Model Cards for Model Reporting" in 2024: Reclassifying Category of Ethical Considerations in Terms of Trustworthiness and Risk Management
- Title(参考訳): 2024年の「モデルレポート用モデルカード」:信頼とリスクマネジメントの観点からの倫理的考察のカテゴリーを再分類する
- Authors: DeBrae Kennedy-Mayo, Jake Gord,
- Abstract要約: 2019年、"Model Cards for Model Reporting"と題された論文は、モデルパフォーマンスを文書化する新しいツールを導入した。
この論文で詳述されたカテゴリの1つは倫理的考察であり、データのサブカテゴリ、人間の生活、緩和、リスクと害、ユースケースが含まれる。
我々は、信頼に値するAIとして知られる分野の成熟により、このカテゴリをオリジナルのモデルカードに再分類することを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In 2019, the paper entitled "Model Cards for Model Reporting" introduced a new tool for documenting model performance and encouraged the practice of transparent reporting for a defined list of categories. One of the categories detailed in that paper is ethical considerations, which includes the subcategories of data, human life, mitigations, risks and harms, and use cases. We propose to reclassify this category in the original model card due to the recent maturing of the field known as trustworthy AI, a term which analyzes whether the algorithmic properties of the model indicate that the AI system is deserving of trust from its stakeholders. In our examination of trustworthy AI, we highlight three respected organizations - the European Commission's High-Level Expert Group on AI, the OECD, and the U.S.-based NIST - that have written guidelines on various aspects of trustworthy AI. These recent publications converge on numerous characteristics of the term, including accountability, explainability, fairness, privacy, reliability, robustness, safety, security, and transparency, while recognizing that the implementation of trustworthy AI varies by context. Our reclassification of the original model-card category known as ethical considerations involves a two-step process: 1) adding a new category known as trustworthiness, where the subcategories will be derived from the discussion of trustworthy AI in our paper, and 2) maintaining the subcategories of ethical considerations under a renamed category known as risk environment and risk management, a title which we believe better captures today's understanding of the essence of these topics. We hope that this reclassification will further the goals of the original paper and continue to prompt those releasing trained models to accompany these models with documentation that will assist in the evaluation of their algorithmic properties.
- Abstract(参考訳): 2019年、"Model Cards for Model Reporting"と題された論文は、モデルパフォーマンスを文書化する新しいツールを導入し、カテゴリの定義されたリストに対する透過的なレポートの実践を奨励した。
この論文で詳述されたカテゴリの1つは倫理的考察であり、データのサブカテゴリ、人間の生活、緩和、リスクと害、ユースケースが含まれる。
我々は、このカテゴリを、信頼に値するAIと呼ばれる分野の最近の成熟により、元のモデルカードに再分類することを提案する。
我々は、信頼できるAIのさまざまな側面に関するガイドラインを書いた、欧州委員会のAIに関するハイレベルエキスパートグループ(High-Level Expert Group)、OECD(OECD)、米国を拠点とするNIST(NIST)という、尊敬される3つの組織に注目した。
これらの最近の出版物は、説明責任、説明可能性、公正性、プライバシ、信頼性、堅牢性、安全性、セキュリティ、透明性など、この用語の多くの特性に集約されている。
倫理的考察として知られる原モデルカードカテゴリーの再分類には、以下の2段階のプロセスが伴う。
1)信頼度として知られる新たなカテゴリを追加し、そのサブカテゴリは、我々の論文における信頼に値するAIの議論から導かれる。
2 リスク環境及びリスク管理という改称されたカテゴリーの下で倫理的考察のサブカテゴリを維持すること。
この再分類によって、元の論文の目標をさらに進め、トレーニングされたモデルをリリースする人たちに、アルゴリズム特性の評価を支援するドキュメントを添付するよう促すことを願っています。
関連論文リスト
- Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions [62.12545440385489]
大規模言語モデル(LLM)は、テキスト生成の大幅な進歩をもたらしたが、分類タスクの強化の可能性はまだ未検討である。
生成と符号化の両方のアプローチを含む分類のための微調整LDMを徹底的に研究するためのフレームワークを提案する。
我々はこのフレームワークを編集意図分類(EIC)においてインスタンス化する。
論文 参考訳(メタデータ) (2024-10-02T20:48:28Z) - Documenting Ethical Considerations in Open Source AI Models [8.517777178514242]
本研究では,開発者がオープンソースAIモデルの倫理的側面を実際にどのように文書化しているかを検討する。
2,347の文書の最初の集合をフィルタリングした後、265の関連文書を特定した。
モデル行動リスク、モデルユースケース、モデルリスク軽減の6つのテーマが浮かび上がっています。
論文 参考訳(メタデータ) (2024-06-26T05:02:44Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
画像品質評価(IQA)モデルは意味情報から大きな恩恵を受け、異なる種類のオブジェクトを明瞭に扱うことができる。
十分な注釈付きデータが不足している従来の手法では、セマンティックな認識を得るために、CLIPイメージテキスト事前学習モデルをバックボーンとして使用していた。
近年のアプローチでは、このミスマッチに即時技術を使って対処する試みがあるが、これらの解決策には欠点がある。
本稿では、IQAのための革新的なマルチモーダルプロンプトベースの手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T11:45:32Z) - Unpacking the Ethical Value Alignment in Big Models [46.560886177083084]
本稿では,ビッグモデルに関連するリスクと課題の概要,既存のAI倫理ガイドラインを調査し,これらのモデルの限界から生じる倫理的影響について考察する。
本稿では,大規模モデルの倫理的価値を整合させる新しい概念パラダイムを導入し,アライメント基準,評価,方法に関する有望な研究方向性について議論する。
論文 参考訳(メタデータ) (2023-10-26T16:45:40Z) - Evaluating the Fairness of Discriminative Foundation Models in Computer
Vision [51.176061115977774]
本稿では,CLIP (Contrastive Language-Pretraining) などの差別基盤モデルのバイアス評価のための新しい分類法を提案する。
そして、これらのモデルにおけるバイアスを緩和するための既存の手法を分類学に関して体系的に評価する。
具体的には,ゼロショット分類,画像検索,画像キャプションなど,OpenAIのCLIPとOpenCLIPモデルをキーアプリケーションとして評価する。
論文 参考訳(メタデータ) (2023-10-18T10:32:39Z) - AI Risk Profiles: A Standards Proposal for Pre-Deployment AI Risk
Disclosures [0.8702432681310399]
下流の意思決定をガイドできるリスクプロファイリング標準を提案する。
この基準は、提案したAIリスクの分類に基づいており、文献で提案されるさまざまなリスクの高度な分類を反映している。
我々はこの方法論を,公開情報を用いた多数の著名なAIシステムに適用する。
論文 参考訳(メタデータ) (2023-09-22T20:45:15Z) - An Audit Framework for Technical Assessment of Binary Classifiers [0.0]
ロジスティック回帰 (MLogRM) とランダムフォレストモデル (RFM) を用いたマルチレベルモデルは、二項分類のために産業にますます導入されている。
欧州委員会が提案する人工知能法(AIA)は、特定の条件下では、そのようなモデルの適用は公正で透明性があり倫理的である必要がある。
本稿では, モデル, 識別, 透明性, 説明可能性に関する側面に着目し, RFM と MLogRM の技術的評価のための監査フレームワークを提案し, 実証する。
論文 参考訳(メタデータ) (2022-11-17T12:48:11Z) - Novel Class Discovery without Forgetting [72.52222295216062]
我々は NCDwF: Novel Class Discovery without Forgetting の新たな実用的問題設定を特定し,定式化する。
ラベルのないデータから新しいカテゴリのインスタンスを段階的に発見する機械学習モデルを提案する。
CIFAR-10, CIFAR-100, ImageNet-1000に基づく実験プロトコルを導入し, 知識保持と新しいクラス発見のトレードオフを測定する。
論文 参考訳(メタデータ) (2022-07-21T17:54:36Z) - Multisource AI Scorecard Table for System Evaluation [3.74397577716445]
本稿では、AI/機械学習(ML)システムの開発者およびユーザに対して標準チェックリストを提供するマルチソースAIスコアカードテーブル(MAST)について述べる。
本稿では,インテリジェンス・コミュニティ・ディレクティブ(ICD)203で概説されている分析的トレードクラフト標準が,AIシステムの性能を評価するためのフレームワークを提供する方法について考察する。
論文 参考訳(メタデータ) (2021-02-08T03:37:40Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。