論文の概要: Coupled generator decomposition for fusion of electro- and magnetoencephalography data
- arxiv url: http://arxiv.org/abs/2403.15409v1
- Date: Sat, 2 Mar 2024 12:09:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 03:04:05.206793
- Title: Coupled generator decomposition for fusion of electro- and magnetoencephalography data
- Title(参考訳): 電気・磁気脳波データの融合のための結合ジェネレータ分解
- Authors: Anders Stevnhoved Olsen, Jesper Duemose Nielsen, Morten Mørup,
- Abstract要約: データ融合モデリングは、ソース固有の変数を考慮に入れながら、多様なデータソースにまたがる共通の特徴を識別することができる。
本稿では、テキスト結合型ジェネレータ分解の概念を導入し、データ融合のためのスパース主成分分析をいかに一般化するかを示す。
- 参考スコア(独自算出の注目度): 1.7102695043811291
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Data fusion modeling can identify common features across diverse data sources while accounting for source-specific variability. Here we introduce the concept of a \textit{coupled generator decomposition} and demonstrate how it generalizes sparse principal component analysis (SPCA) for data fusion. Leveraging data from a multisubject, multimodal (electro- and magnetoencephalography (EEG and MEG)) neuroimaging experiment, we demonstrate the efficacy of the framework in identifying common features in response to face perception stimuli, while accommodating modality- and subject-specific variability. Through split-half cross-validation of EEG/MEG trials, we investigate the optimal model order and regularization strengths for models of varying complexity, comparing these to a group-level model assuming shared brain responses to stimuli. Our findings reveal altered $\sim170ms$ fusiform face area activation for scrambled faces, as opposed to real faces, particularly evident in the multimodal, multisubject model. Model parameters were inferred using stochastic optimization in PyTorch, demonstrating comparable performance to conventional quadratic programming inference for SPCA but with considerably faster execution. We provide an easily accessible toolbox for coupled generator decomposition that includes data fusion for SPCA, archetypal analysis and directional archetypal analysis. Overall, our approach offers a promising new avenue for data fusion.
- Abstract(参考訳): データ融合モデリングは、ソース固有の変数を考慮に入れながら、多様なデータソースにまたがる共通の特徴を識別することができる。
本稿では,<textit{coupled generator decomposition} の概念を紹介し,データ融合におけるスパース主成分分析(SPCA)の一般化について述べる。
マルチオブジェクト・マルチモーダル(Electro- and magnetoencephalography (EEG, MEG))ニューロイメージング実験から得られたデータを用いて, 顔の知覚刺激に応答して共通の特徴を識別する枠組みの有効性を実証した。
脳波/MEG試験の半減期クロスバリデーションを通じて、様々な複雑さのモデルに対する最適モデル順序と正規化強度について検討し、刺激に対する共有脳反応を仮定した群レベルモデルと比較した。
以上の結果から,マルチモーダル・マルチオブジェクトモデルで特に顕著な実際の顔とは対照的に,スクランブルフェースに対するファシフォームフェースエリアアクティベーションを$\sim170ms$で変更したことが判明した。
モデルパラメータは PyTorch の確率的最適化を用いて推定され、SPCA の従来の2次プログラミング推定に匹敵する性能を示した。
本研究では,SPCAデータフュージョン,アーキティパル解析,方向性アーキティパル解析などの複合ジェネレータ分解用ツールボックスを提案する。
全体として、当社のアプローチは、データフュージョンのための有望な新しい道を提供する。
関連論文リスト
- MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
テスト時間適応(TTA)は、モデルの一般化性を高めるための有望なパラダイムとして登場した。
本稿では,Met-In-The-MiddleをベースとしたMITAを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:02:33Z) - FissionFusion: Fast Geometric Generation and Hierarchical Souping for Medical Image Analysis [0.7751705157998379]
十分に注釈付けされた医療データセットの不足は、ImageNetのような広範なデータセットやCLIPのような事前訓練されたモデルからの移行学習を活用する必要がある。
モデルスープは、In-Domain(ID)タスクのパフォーマンスを改善し、out-of-Distribution(OOD)データセットに対する堅牢性を高めることを目的とした、複数の微調整されたモデルの平均である。
本稿では,様々なレベルのモデルの局所的および大域的集約を伴う階層的統合手法を提案する。
論文 参考訳(メタデータ) (2024-03-20T06:48:48Z) - CoCoGen: Physically-Consistent and Conditioned Score-based Generative Models for Forward and Inverse Problems [1.0923877073891446]
この研究は生成モデルの到達範囲を物理的問題領域に拡張する。
基礎となるPDEとの整合性を促進するための効率的なアプローチを提案する。
各種物理課題におけるスコアベース生成モデルの可能性と汎用性を示す。
論文 参考訳(メタデータ) (2023-12-16T19:56:10Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
本稿では,データセットからのインスタンスのバッチを進化状態にエンコードするエネルギー制約拡散モデルを提案する。
任意のインスタンス対間の対拡散強度に対する閉形式最適推定を示唆する厳密な理論を提供する。
各種タスクにおいて優れた性能を有する汎用エンコーダバックボーンとして,本モデルの適用性を示す実験を行った。
論文 参考訳(メタデータ) (2023-01-23T15:18:54Z) - MoReL: Multi-omics Relational Learning [26.484803417186384]
ヘテロジニアスビューの分子間相互作用をコードする多部グラフを効率的に推定する新しいディープベイズ生成モデルを提案する。
このようなディープベイズ生成モデルにおける最適輸送正則化により、ビュー固有側情報を組み込むだけでなく、分布ベース正則化によるモデルの柔軟性も向上する。
論文 参考訳(メタデータ) (2022-03-15T02:50:07Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Multimodal Data Fusion in High-Dimensional Heterogeneous Datasets via
Generative Models [16.436293069942312]
我々は、教師なしの方法で高次元異種データから確率的生成モデルを学習することに興味がある。
本稿では,指数関数的な分布系を通じて異なるデータ型を結合する一般的なフレームワークを提案する。
提案アルゴリズムは、実数値(ガウス)とカテゴリー(マルチノミカル)の特徴を持つ、よく遭遇する異種データセットについて詳細に述べる。
論文 参考訳(メタデータ) (2021-08-27T18:10:31Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z) - Bayesian Sparse Factor Analysis with Kernelized Observations [67.60224656603823]
多視点問題は潜在変数モデルに直面することができる。
高次元問題と非線形問題は伝統的にカーネルメソッドによって扱われる。
両アプローチを単一モデルにマージすることを提案する。
論文 参考訳(メタデータ) (2020-06-01T14:25:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。