論文の概要: Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets
- arxiv url: http://arxiv.org/abs/2403.15415v2
- Date: Thu, 27 Jun 2024 11:35:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 19:16:49.557406
- Title: Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets
- Title(参考訳): 不均一脳波データセットを用いた機械学習のための物理インフォームドおよび教師なしリーマン領域適応
- Authors: Apolline Mellot, Antoine Collas, Sylvain Chevallier, Denis Engemann, Alexandre Gramfort,
- Abstract要約: 脳波信号物理を利用した教師なし手法を提案する。
脳波チャンネルをフィールド、ソースフリーなドメイン適応を用いて固定位置にマッピングする。
提案手法は脳-コンピュータインタフェース(BCI)タスクおよび潜在的なバイオマーカー応用におけるロバストな性能を示す。
- 参考スコア(独自算出の注目度): 53.367212596352324
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Combining electroencephalogram (EEG) datasets for supervised machine learning (ML) is challenging due to session, subject, and device variability. ML algorithms typically require identical features at train and test time, complicating analysis due to varying sensor numbers and positions across datasets. Simple channel selection discards valuable data, leading to poorer performance, especially with datasets sharing few channels. To address this, we propose an unsupervised approach leveraging EEG signal physics. We map EEG channels to fixed positions using field interpolation, facilitating source-free domain adaptation. Leveraging Riemannian geometry classification pipelines and transfer learning steps, our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications. Comparative analysis against a statistical-based approach known as Dimensionality Transcending, a signal-based imputation called ComImp, source-dependent methods, as well as common channel selection and spherical spline interpolation, was conducted with leave-one-dataset-out validation on six public BCI datasets for a right-hand/left-hand classification task. Numerical experiments show that in the presence of few shared channels in train and test, the field interpolation consistently outperforms other methods, demonstrating enhanced classification performance across all datasets. When more channels are shared, field interpolation was found to be competitive with other methods and faster to compute than source-dependent methods.
- Abstract(参考訳): 教師あり機械学習(ML)のための脳波(EEG)データセットの組み合わせは、セッション、主題、デバイスの多様性のために困難である。
MLアルゴリズムは通常、トレーニング時とテスト時に同じ機能を必要とし、データセット間のセンサー数や位置の変化による分析を複雑にする。
単純なチャネル選択は、貴重なデータを破棄し、特に少ないチャネルを共有するデータセットにおいて、パフォーマンスが低下する。
そこで本研究では,脳波信号物理を利用した教師なしアプローチを提案する。
我々は脳波チャンネルをフィールド補間を用いて固定位置にマッピングし、ソースフリーなドメイン適応を容易にする。
本手法は,脳-コンピュータインタフェース(BCI)タスクおよび潜在的なバイオマーカー応用における頑健な性能を示す。
ComImpと呼ばれる信号に基づく計算法であるDigitality Transcendingと、共通チャネル選択法と球面スプライン補間法を比較した。
数値実験により、列車や試験において共有チャネルが少ない場合、フィールド補間は他の手法よりも優れた性能を示し、全てのデータセットの分類性能が向上することを示した。
より多くのチャネルが共有されると、フィールド補間は他のメソッドと競合し、ソースに依存したメソッドよりも高速に計算できることが判明した。
関連論文リスト
- Weakly supervised covariance matrices alignment through Stiefel matrices
estimation for MEG applications [64.20396555814513]
本稿では,Mixing Model Stiefel Adaptation (MSA)と呼ばれる時系列データに対する新しいドメイン適応手法を提案する。
我々は、ドメイン間の等価な信号分散とペアの対応を確立することにより、ターゲット領域における豊富なラベルのないデータを利用して効果的な予測を行う。
MSAは、Cam-CANデータセットのMEG信号を用いて、タスクの変動を伴う脳年齢回帰の最近の手法より優れている。
論文 参考訳(メタデータ) (2024-01-24T19:04:49Z) - FedSym: Unleashing the Power of Entropy for Benchmarking the Algorithms
for Federated Learning [1.4656078321003647]
Federated Learning(FL)は、独立した学習者がデータをプライベートに処理する分散機械学習アプローチである。
現在普及しているデータ分割技術について検討し、その主な欠点を可視化する。
エントロピーと対称性を利用して「最も困難」かつ制御可能なデータ分布を構築する手法を提案する。
論文 参考訳(メタデータ) (2023-10-11T18:39:08Z) - Single Domain Generalization via Normalised Cross-correlation Based
Convolutions [14.306250516592304]
単一ドメインの一般化は、単一のソースからのデータを使用して堅牢なモデルをトレーニングすることを目的としている。
本稿では、重みと入力特徴パッチの間の正規化相互相関を計算するXCNormという演算子を提案する。
この演算子で構成されるディープニューラルネットワークは、一般的な意味分布シフトに対して堅牢であることを示す。
論文 参考訳(メタデータ) (2023-07-12T04:15:36Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
我々は、CMMN(Convolutional Monge Mapping Normalization)と呼ばれる新しい手法を提案する。
CMMNは、そのパワースペクトル密度(PSD)をトレーニングデータに基づいて推定されるワッサーシュタインバリセンタに適応させるために、信号をフィルタリングする。
睡眠脳波データに関する数値実験により、CMMNはニューラルネットワークアーキテクチャから独立して、顕著で一貫したパフォーマンス向上をもたらすことが示された。
論文 参考訳(メタデータ) (2023-05-30T08:24:01Z) - Domain Adaptation Principal Component Analysis: base linear method for
learning with out-of-distribution data [55.41644538483948]
ドメイン適応は現代の機械学習において一般的なパラダイムである。
ドメイン適応主成分分析(DAPCA)という手法を提案する。
DAPCAは、領域適応タスクの解決に有用な線形化データ表現を見つける。
論文 参考訳(メタデータ) (2022-08-28T21:10:56Z) - Exploiting Multiple EEG Data Domains with Adversarial Learning [20.878816519635304]
この文脈でデータソース不変表現を学習するための逆推論手法を提案する。
異なる音源領域からの脳波記録(感情認識SEED, SEED-IV, DEAP, DREAMER)を統一する。
論文 参考訳(メタデータ) (2022-04-16T11:09:20Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
本稿では,Long-Short-Term-Memory(LSTM)とCapsule Networksを1つのネットワークに結合した新しいNNアーキテクチャを提案する。
提案手法は教師なし学習手法を用いて大量のラベル付きトレーニングデータを見つける際の問題を克服する。
論文 参考訳(メタデータ) (2022-02-11T10:33:53Z) - Learning from Heterogeneous EEG Signals with Differentiable Channel
Reordering [51.633889765162685]
CHARMは、一貫性のない入力チャネルをまたいだ単一のニューラルネットワークのトレーニング方法である。
我々は4つの脳波分類データセットの実験を行い、CHARMの有効性を実証した。
論文 参考訳(メタデータ) (2020-10-21T12:32:34Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
機械学習(ML)とモデルベースアルゴリズムを組み合わせた,検出設計のシンボル化を目的とした,データ駆動型フレームワークについてレビューする。
このハイブリッドアプローチでは、よく知られたチャネルモデルに基づくアルゴリズムをMLベースのアルゴリズムで拡張し、チャネルモデル依存性を除去する。
提案手法は, 正確なチャネル入出力統計関係を知らなくても, モデルベースアルゴリズムのほぼ最適性能が得られることを示す。
論文 参考訳(メタデータ) (2020-02-14T06:58:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。