論文の概要: Attention is all you need for boosting graph convolutional neural network
- arxiv url: http://arxiv.org/abs/2403.15419v1
- Date: Sun, 10 Mar 2024 11:28:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-04-01 03:04:05.191141
- Title: Attention is all you need for boosting graph convolutional neural network
- Title(参考訳): グラフ畳み込みニューラルネットワークの強化には注意が必要だ
- Authors: Yinwei Wu,
- Abstract要約: グラフ畳み込みニューラルネットワーク(GCN)は、非グリッドドメインでグラフデータを処理するための強力な能力を持っている。
本研究では,GKEDM (Graph Knowledge Enhancement and Distillation Module) と呼ばれるプラグインモジュールを提案する。
GKEDMは、グラフ情報を抽出し集約することにより、ノード表現を強化し、GCNの性能を向上させることができる。
大規模教員ネットワークからの蒸留知識を、注意蒸留により小規模学生ネットワークに効率的に伝達することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Convolutional Neural Networks (GCNs) possess strong capabilities for processing graph data in non-grid domains. They can capture the topological logical structure and node features in graphs and integrate them into nodes' final representations. GCNs have been extensively studied in various fields, such as recommendation systems, social networks, and protein molecular structures. With the increasing application of graph neural networks, research has focused on improving their performance while compressing their size. In this work, a plug-in module named Graph Knowledge Enhancement and Distillation Module (GKEDM) is proposed. GKEDM can enhance node representations and improve the performance of GCNs by extracting and aggregating graph information via multi-head attention mechanism. Furthermore, GKEDM can serve as an auxiliary transferor for knowledge distillation. With a specially designed attention distillation method, GKEDM can distill the knowledge of large teacher models into high-performance and compact student models. Experiments on multiple datasets demonstrate that GKEDM can significantly improve the performance of various GCNs with minimal overhead. Furthermore, it can efficiently transfer distilled knowledge from large teacher networks to small student networks via attention distillation.
- Abstract(参考訳): グラフ畳み込みニューラルネットワーク(GCN)は、非グリッドドメインでグラフデータを処理するための強力な能力を持っている。
グラフのトポロジ的論理構造とノードの特徴をキャプチャして、ノードの最終的な表現に統合することができる。
GCNはレコメンデーションシステム、ソーシャルネットワーク、タンパク質分子構造など様々な分野で広く研究されている。
グラフニューラルネットワークの応用が増加する中、研究はサイズを圧縮しながらパフォーマンスを改善することに注力してきた。
本研究では,GKEDM (Graph Knowledge Enhancement and Distillation Module) と呼ばれるプラグインモジュールを提案する。
GKEDMは,マルチヘッドアテンション機構を用いてグラフ情報を抽出・集約することで,ノード表現を強化し,GCNの性能を向上させることができる。
さらに、GKEDMは知識蒸留の補助トランスファーとしても機能する。
特別に設計された注意蒸留法により、GKEDMは大規模教師モデルの知識を高性能でコンパクトな学生モデルに蒸留することができる。
複数のデータセットの実験により、GKEDMはオーバーヘッドを最小限にして様々なGCNのパフォーマンスを大幅に改善できることが示された。
さらに, 大規模教員ネットワークから小学生ネットワークへ, 注意蒸留により, 蒸留知識を効率よく伝達することができる。
関連論文リスト
- Adversarial Curriculum Graph-Free Knowledge Distillation for Graph Neural Networks [61.608453110751206]
本稿では,グラフニューラルネットワークのための高速かつ高品質なデータフリー知識蒸留手法を提案する。
グラフフリーKD法(ACGKD)は擬似グラフの空間的複雑さを著しく低減する。
ACGKDは、生徒の次元を拡大することで、生徒と教師のモデル間の次元のあいまいさを取り除く。
論文 参考訳(メタデータ) (2025-04-01T08:44:27Z) - Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
グラフ構造化データの表現学習では、多くの人気のあるグラフニューラルネットワーク(GNN)が長距離依存をキャプチャできない。
本稿では,自己注意型グラフ畳み込みネットワーク(GCN-SA)と呼ばれる新しいグラフ学習フレームワークを提案する。
提案手法はノードレベルの表現学習において例外的な一般化能力を示す。
論文 参考訳(メタデータ) (2024-03-06T05:00:31Z) - Compressing Deep Graph Neural Networks via Adversarial Knowledge
Distillation [41.00398052556643]
本稿では,GraphAKD というグラフモデルのための新しい知識蒸留フレームワークを提案する。
識別器は教師の知識と学生が継承するものを区別し、学生GNNはジェネレータとして働き、識別器を騙す。
その結果、GraphAKDは複雑な教師GNNからコンパクトな学生GNNに正確な知識を伝達できることがわかった。
論文 参考訳(メタデータ) (2022-05-24T00:04:43Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Spiking Graph Convolutional Networks [19.36064180392385]
SpikingGCNは、GCNの埋め込みとSNNの生体忠実性特性を統合することを目的としたエンドツーエンドフレームワークである。
ニューロモルフィックチップ上でのスパイキングGCNは、グラフデータ解析にエネルギー効率の明確な利点をもたらすことを示す。
論文 参考訳(メタデータ) (2022-05-05T16:44:36Z) - Hierarchical Graph Capsule Network [78.4325268572233]
ノード埋め込みを共同で学習し,グラフ階層を抽出できる階層型グラフカプセルネットワーク(HGCN)を提案する。
階層的表現を学ぶために、HGCNは下層カプセル(部分)と高層カプセル(全体)の間の部分的関係を特徴付ける。
論文 参考訳(メタデータ) (2020-12-16T04:13:26Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
グラフ畳み込みネットワーク(GCN)は,豊富な情報を持つ複雑なグラフにおいて,ノードの特徴と位相構造を最適に統合できるかどうかを検討する。
半教師付き分類(AM-GCN)のための適応型マルチチャネルグラフ畳み込みネットワークを提案する。
実験の結果,AM-GCNはノードの特徴とトポロジ的構造の両方から最も相関性の高い情報を抽出することがわかった。
論文 参考訳(メタデータ) (2020-07-05T08:16:03Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z) - DeeperGCN: All You Need to Train Deeper GCNs [66.64739331859226]
グラフ畳み込みネットワーク(GCN)はグラフ上での表現学習の力で注目されている。
非常に深いレイヤを積み重ねることのできる畳み込みニューラルネットワーク(CNN)とは異なり、GCNはより深く進むと、勾配の消失、過度なスムース化、過度に適合する問題に悩まされる。
本稿では,非常に深いGCNを正常かつ確実に訓練できるDeeperGCNを提案する。
論文 参考訳(メタデータ) (2020-06-13T23:00:22Z) - Data Augmentation for Graph Neural Networks [32.24311481878144]
半教師付きノード分類を改善する文脈において,グラフニューラルネットワーク(GNN)のグラフデータ拡張について検討した。
本研究は,階層内エッジの促進とグラフ構造におけるクラス間エッジの復号化のために,クラス-ホモフィル構造を効果的に符号化できることを示唆する。
我々の主な貢献はGAugグラフデータ拡張フレームワークを導入し、これらの洞察を活用してエッジ予測によるGNNベースのノード分類の性能を向上させる。
論文 参考訳(メタデータ) (2020-06-11T21:17:56Z) - Distilling Knowledge from Graph Convolutional Networks [146.71503336770886]
既存の知識蒸留法は畳み込みニューラルネットワーク(CNN)に焦点を当てている
本稿では,事前学習したグラフ畳み込みネットワーク(GCN)モデルから知識を抽出する手法を提案する。
提案手法は,GCNモデルに対する最先端の知識蒸留性能を実現する。
論文 参考訳(メタデータ) (2020-03-23T18:23:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。