論文の概要: Introducing an ensemble method for the early detection of Alzheimer's disease through the analysis of PET scan images
- arxiv url: http://arxiv.org/abs/2403.15443v1
- Date: Sun, 17 Mar 2024 16:12:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 02:54:20.838705
- Title: Introducing an ensemble method for the early detection of Alzheimer's disease through the analysis of PET scan images
- Title(参考訳): PETスキャン画像解析によるアルツハイマー病早期発見のためのアンサンブル法の導入
- Authors: Arezoo Borji, Taha-Hossein Hejazi, Abbas Seifi,
- Abstract要約: 本研究は、アルツハイマー病を制御正常(CN)、進行性軽度認知障害(pMCI)、安定性軽度認知障害(sMCI)、アルツハイマー病(AD)の4つのグループに分類する難しい課題について考察する。
いくつかのディープラーニングモデルと伝統的な機械学習モデルがアルツハイマー病の検出に使われている。
その結果、深層学習モデルを用いてMCI患者間の差異を判断すると、全体の平均精度は93.13%、AUCは94.4%となることがわかった。
- 参考スコア(独自算出の注目度): 0.8192907805418583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Alzheimer's disease is a progressive neurodegenerative disorder that primarily affects cognitive functions such as memory, thinking, and behavior. In this disease, there is a critical phase, mild cognitive impairment, that is really important to be diagnosed early since some patients with progressive MCI will develop the disease. This study delves into the challenging task of classifying Alzheimer's disease into four distinct groups: control normal (CN), progressive mild cognitive impairment (pMCI), stable mild cognitive impairment (sMCI), and Alzheimer's disease (AD). This classification is based on a thorough examination of PET scan images obtained from the ADNI dataset, which provides a thorough understanding of the disease's progression. Several deep-learning and traditional machine-learning models have been used to detect Alzheimer's disease. In this paper, three deep-learning models, namely VGG16 and AlexNet, and a custom Convolutional neural network (CNN) with 8-fold cross-validation have been used for classification. Finally, an ensemble technique is used to improve the overall result of these models. The results show that using deep-learning models to tell the difference between MCI patients gives an overall average accuracy of 93.13% and an AUC of 94.4%.
- Abstract(参考訳): アルツハイマー病(英: Alzheimer disease)は、主に記憶、思考、行動などの認知機能に影響を与える進行性神経変性疾患である。
この疾患では、進行性MCI患者が発症するので、早期に診断することが非常に重要である。
本研究は、アルツハイマー病を制御正常(CN)、進行性軽度認知障害(pMCI)、安定性軽度認知障害(sMCI)、アルツハイマー病(AD)の4つのグループに分類する難しい課題について考察した。
この分類は、ADNIデータセットから得られたPETスキャン画像の徹底的な検査に基づいており、疾患の進行を徹底的に理解している。
アルツハイマー病を検出するために、いくつかのディープラーニングモデルと伝統的な機械学習モデルが使用されている。
本稿では、VGG16とAlexNetという3つのディープラーニングモデルと、8倍のクロスバリデーションを持つカスタム畳み込みニューラルネットワーク(CNN)を用いて分類を行った。
最後に、これらのモデル全体の結果を改善するためにアンサンブル技術を用いる。
その結果、深層学習モデルを用いてMCI患者間の差異を判断すると、全体の平均精度は93.13%、AUCは94.4%となることがわかった。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
本研究では,3次元MRIを用いたアルツハイマー病診断の革新的手法を提案する。
提案手法では,2次元CNNがボリューム表現を抽出できるソフトアテンション機構を採用している。
ボクセルレベルの精度では、どの領域に注意が払われているかを同定し、これらの支配的な脳領域を同定する。
論文 参考訳(メタデータ) (2024-07-02T16:44:00Z) - Alzheimer's Magnetic Resonance Imaging Classification Using Deep and Meta-Learning Models [2.4561590439700076]
本研究では,最新のCNNを特徴とする深層学習技術を活用することで,アルツハイマー病(AD)のMRIデータを分類することに焦点を当てた。
アルツハイマー病は高齢者の認知症の主要な原因であり、徐々に認知機能障害を引き起こす不可逆的な脳疾患である。
将来、この研究は、信号、画像、その他のデータを含む他の種類の医療データを組み込むように拡張することができる。
論文 参考訳(メタデータ) (2024-05-20T15:44:07Z) - A reproducible 3D convolutional neural network with dual attention module (3D-DAM) for Alzheimer's disease classification [1.5566524830295307]
本稿では,アルツハイマー病分類のための2つの注意モジュールを備えた3次元畳み込みニューラルネットワークを提案する。
このモデルをADNIデータベースでトレーニングし、2つの独立したデータセットで本手法の一般化性を検証する。
論文 参考訳(メタデータ) (2023-10-19T08:33:23Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - A Machine Learning Approach for Predicting Deterioration in Alzheimer's
Disease [0.0]
本稿では,機械学習を用いたアルツハイマー病の悪化について検討する。
勾配強化を含む6つの機械学習モデルを構築し評価した。
認知正常群のうちどれが劣化したかを予測するCARTを用いて,良好な予測能力を示すことができた。
軽度認知障害群では,Elastic Netによる劣化予測能力は良好であった。
論文 参考訳(メタデータ) (2023-06-17T12:23:35Z) - Predicting Alzheimer's Disease Using 3DMgNet [2.97983501982132]
3DMgNetはアルツハイマー病(AD)を診断するためのマルチグリッドと畳み込みニューラルネットワークの統合フレームワークである
このモデルはADとNCの分類で92.133%の精度を達成し、モデルのパラメータを大幅に削減した。
論文 参考訳(メタデータ) (2022-01-12T09:08:08Z) - Deep Convolutional Neural Network based Classification of Alzheimer's
Disease using MRI data [8.609787905151563]
アルツハイマー病(Alzheimer's disease、AD)は、脳細胞を破壊し、患者の記憶に損失を引き起こす進行性および不治性の神経変性疾患である。
本稿では,不均衡な3次元MRIデータセットを用いた2次元深部畳み込みニューラルネットワーク(2D-DCNN)によるADの診断手法を提案する。
このモデルはMRIをAD、軽度認知障害、正常制御の3つのカテゴリに分類し、99.89%の分類精度を不均衡クラスで達成した。
論文 参考訳(メタデータ) (2021-01-08T06:51:08Z) - Multimodal Gait Recognition for Neurodegenerative Diseases [38.06704951209703]
3つの神経変性疾患の歩容差を学習するための新しいハイブリッドモデルを提案する。
新しい相関メモリニューラルネットワークアーキテクチャは、時間的特徴を抽出するために設計されている。
いくつかの最先端技術と比較して,提案手法はより正確な分類結果を示す。
論文 参考訳(メタデータ) (2021-01-07T10:17:11Z) - Multimodal Inductive Transfer Learning for Detection of Alzheimer's
Dementia and its Severity [39.57255380551913]
本稿では,音響的,認知的,言語的特徴を活用してマルチモーダルアンサンブルシステムを構築する新しいアーキテクチャを提案する。
時相特性を持つ特殊な人工ニューラルネットワークを使用して、アルツハイマー認知症(AD)とその重症度を検出する。
本システムでは,AD分類では最先端試験精度,精度,リコール,F1スコアが83.3%,MMSEスコア評価では4.60の最先端試験根平均二乗誤差(RMSE)が得られた。
論文 参考訳(メタデータ) (2020-08-30T21:47:26Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。