論文の概要: Human brain activity for machine attention
- arxiv url: http://arxiv.org/abs/2006.05113v2
- Date: Fri, 2 Oct 2020 22:06:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-23 14:17:11.979563
- Title: Human brain activity for machine attention
- Title(参考訳): 機械の注意のための脳活動
- Authors: Lukas Muttenthaler, Nora Hollenstein, Maria Barrett
- Abstract要約: 我々は脳波(EEG)という神経科学データを初めて活用し、人間の脳の言語処理について神経の注意モデルに知らせる。
我々は、理論上動機付けられた収穫と無作為な森林分枝を組み合わせることで、機械の注意を監督する脳波の特徴を見つける手法を考案した。
これらの特徴を関係分類の注意を規則化するために応用し、脳波が強い基準線よりも情報的であることを示す。
- 参考スコア(独自算出の注目度): 8.673635963837532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cognitively inspired NLP leverages human-derived data to teach machines about
language processing mechanisms. Recently, neural networks have been augmented
with behavioral data to solve a range of NLP tasks spanning syntax and
semantics. We are the first to exploit neuroscientific data, namely
electroencephalography (EEG), to inform a neural attention model about language
processing of the human brain. The challenge in working with EEG data is that
features are exceptionally rich and need extensive pre-processing to isolate
signals specific to text processing. We devise a method for finding such EEG
features to supervise machine attention through combining theoretically
motivated cropping with random forest tree splits. After this dimensionality
reduction, the pre-processed EEG features are capable of distinguishing two
reading tasks retrieved from a publicly available EEG corpus. We apply these
features to regularise attention on relation classification and show that EEG
is more informative than strong baselines. This improvement depends on both the
cognitive load of the task and the EEG frequency domain. Hence, informing
neural attention models with EEG signals is beneficial but requires further
investigation to understand which dimensions are the most useful across NLP
tasks.
- Abstract(参考訳): 認知的にインスピレーションを受けたNLPは、人間由来のデータを活用して、機械に言語処理メカニズムを教える。
最近、ニューラルネットワークは、構文とセマンティクスにまたがるさまざまなNLPタスクを解決するために、行動データで拡張されている。
我々は脳波(EEG)という神経科学データを初めて活用し、人間の脳の言語処理について神経の注意モデルに知らせる。
EEGデータを扱う上での課題は、機能が極めてリッチで、テキスト処理特有の信号を分離するためには、広範な事前処理が必要であることだ。
我々は、理論上動機付けられた収穫と無作為な森林分枝を組み合わせることで、機械の注意を監督する脳波の特徴を見つける手法を考案した。
この次元の縮小後、前処理された脳波の特徴は、公開されている脳波コーパスから得られた2つの読み出しタスクを識別することができる。
これらの特徴を関係分類に対する注意の定式化に応用し,脳波が強いベースラインよりも有益であることを示す。
この改善は、タスクの認知負荷と脳波周波数領域の両方に依存します。
したがって、脳波信号による神経注意モデルの通知は有益であるが、nlpタスクでどの次元が最も有用かを理解するためにさらなる調査が必要である。
関連論文リスト
- Feature Estimation of Global Language Processing in EEG Using Attention Maps [5.173821279121835]
本研究は,脳波の特徴推定に新たなアプローチを導入し,深層学習モデルの重みを利用してその関連を探索する。
視覚変換器とEEGNetから生成したアテンションマップは,従来の研究結果と一致した特徴を効果的に同定できることを実証する。
ViTsを用いたMel-Spectrogramの適用により、時間および周波数関連脳波特性の分解能が向上する。
論文 参考訳(メタデータ) (2024-09-27T22:52:31Z) - EEG decoding with conditional identification information [7.873458431535408]
脳波信号を復号することは、人間の脳を解き放ち、脳とコンピュータのインターフェースを進化させるのに不可欠である。
従来の機械学習アルゴリズムは、高ノイズレベルと脳波信号の個人間変動によって妨げられている。
ディープニューラルネットワーク(DNN)の最近の進歩は、その高度な非線形モデリング能力のために、将来性を示している。
論文 参考訳(メタデータ) (2024-03-21T13:38:59Z) - EEGDiR: Electroencephalogram denoising network for temporal information storage and global modeling through Retentive Network [11.491355463353731]
我々はRetnetを自然言語処理から脳波分解まで導入する。
Retnetの脳波への直接的適用は脳波信号の1次元の性質のため不可能である。
本稿では,1次元の脳波信号を2次元に変換してネットワーク入力として用いる信号埋め込み手法を提案する。
論文 参考訳(メタデータ) (2024-03-20T15:04:21Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
本稿では,限られたラベルを持つ脳波から効果的な表現を抽出する知識駆動型クロスビューコントラスト学習フレームワーク(KDC2)を提案する。
KDC2法は脳波信号の頭皮と神経のビューを生成し、脳活動の内部および外部の表現をシミュレートする。
ニューラル情報整合性理論に基づく事前のニューラル知識をモデル化することにより、提案手法は不変かつ相補的なニューラル知識を抽出し、複合表現を生成する。
論文 参考訳(メタデータ) (2023-09-21T08:53:51Z) - Evaluating the structure of cognitive tasks with transfer learning [67.22168759751541]
本研究では,脳波復号処理における深層学習表現の伝達可能性について検討した。
最近リリースされた2つのEEGデータセット上で、最先端デコードモデルを用いて広範な実験を行う。
論文 参考訳(メタデータ) (2023-07-28T14:51:09Z) - A Convolutional Spiking Network for Gesture Recognition in
Brain-Computer Interfaces [0.8122270502556371]
脳信号に基づく手振り分類の例題問題に対して,簡単な機械学習に基づくアプローチを提案する。
本手法は脳波データとECoGデータの両方で異なる対象に一般化し,92.74-97.07%の範囲で精度が向上することを示した。
論文 参考訳(メタデータ) (2023-04-21T16:23:40Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - Open Vocabulary Electroencephalography-To-Text Decoding and Zero-shot
Sentiment Classification [78.120927891455]
最先端のブレイン・トゥ・テキストシステムは、ニューラルネットワークを使用して脳信号から直接言語を復号することに成功した。
本稿では,自然読解課題における語彙的脳波(EEG)-テキスト列列列復号化とゼロショット文感性分類に問題を拡張する。
脳波-テキストデコーディングで40.1%のBLEU-1スコア、ゼロショット脳波に基づく3次感情分類で55.6%のF1スコアを達成し、教師付きベースラインを著しく上回る結果となった。
論文 参考訳(メタデータ) (2021-12-05T21:57:22Z) - Decoding EEG Brain Activity for Multi-Modal Natural Language Processing [9.35961671939495]
自然言語処理タスクを改善するために脳波脳活動データの可能性を体系的に分析する最初の大規模研究を行った。
脳波信号を周波数帯域にフィルタリングすることはブロードバンド信号よりも有益であることがわかった。
単語埋め込みタイプの範囲のために、EEGデータは二分および三分感情の分類を改善し、複数のベースラインを上回ります。
論文 参考訳(メタデータ) (2021-02-17T09:44:21Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
CNNと脳のつながりを利用した新しい分類システムを導入し,その効果を感情映像分類により検証する。
対象映像の感情的特性に関連する脳接続の集中度は分類性能と相関する。
論文 参考訳(メタデータ) (2021-01-18T13:28:08Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。