論文の概要: Visual Analytics for Fine-grained Text Classification Models and Datasets
- arxiv url: http://arxiv.org/abs/2403.15492v1
- Date: Thu, 21 Mar 2024 17:26:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 22:22:15.703676
- Title: Visual Analytics for Fine-grained Text Classification Models and Datasets
- Title(参考訳): きめ細かいテキスト分類モデルとデータセットのためのビジュアル分析
- Authors: Munkhtulga Battogtokh, Yiwen Xing, Cosmin Davidescu, Alfie Abdul-Rahman, Michael Luck, Rita Borgo,
- Abstract要約: SemLaは、きめ細かいテキスト分類に適した、新しいビジュアル分析システムである。
本稿では,SemLaにおける反復設計研究と結果のイノベーションについて述べる。
- 参考スコア(独自算出の注目度): 3.6873612681664016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In natural language processing (NLP), text classification tasks are increasingly fine-grained, as datasets are fragmented into a larger number of classes that are more difficult to differentiate from one another. As a consequence, the semantic structures of datasets have become more complex, and model decisions more difficult to explain. Existing tools, suited for coarse-grained classification, falter under these additional challenges. In response to this gap, we worked closely with NLP domain experts in an iterative design-and-evaluation process to characterize and tackle the growing requirements in their workflow of developing fine-grained text classification models. The result of this collaboration is the development of SemLa, a novel visual analytics system tailored for 1) dissecting complex semantic structures in a dataset when it is spatialized in model embedding space, and 2) visualizing fine-grained nuances in the meaning of text samples to faithfully explain model reasoning. This paper details the iterative design study and the resulting innovations featured in SemLa. The final design allows contrastive analysis at different levels by unearthing lexical and conceptual patterns including biases and artifacts in data. Expert feedback on our final design and case studies confirm that SemLa is a useful tool for supporting model validation and debugging as well as data annotation.
- Abstract(参考訳): 自然言語処理(NLP)では、データセットがより多くのクラスに断片化されるため、テキスト分類タスクはよりきめ細かな粒度化が進んでいる。
その結果、データセットのセマンティック構造はより複雑になり、モデル決定はより説明しにくくなっている。
既存のツールは粗い粒度の分類に向いており、これら追加の課題に対処する。
このギャップに対処するため、我々はNLPドメインの専門家と密接に協力し、細粒度テキスト分類モデルを開発するワークフローにおける要求の増大を特徴付け、対処する反復的設計・評価プロセスに取り組みました。
このコラボレーションの結果、新しいビジュアル分析システムであるSemLaが開発された。
1)モデル埋め込み空間で空間化される場合、データセットで複雑な意味構造を分離し、
2) モデル推論を忠実に説明するために, テキストサンプルの意味におけるきめ細かいニュアンスを可視化する。
本稿では,SemLaにおける反復設計研究と結果のイノベーションについて述べる。
最終的な設計は、データ内のバイアスやアーティファクトを含む語彙的および概念的なパターンを発掘することで、異なるレベルでコントラスト分析を可能にする。
最終設計とケーススタディに関する専門家のフィードバックは、SemLaがデータアノテーションと同様にモデルのバリデーションとデバッギングをサポートする便利なツールであることを確認した。
関連論文リスト
- MaterioMiner -- An ontology-based text mining dataset for extraction of process-structure-property entities [0.0]
本稿では,MaterioMinerデータセットと,オントロジの概念がテキストの実体と結びついている材料オントロジーについて述べる。
本稿では,3つのレーダ間の整合性について検討し,名前付きプロセス認識モデルトレーニングの実現可能性を示す。
論文 参考訳(メタデータ) (2024-08-05T21:42:59Z) - Deep Content Understanding Toward Entity and Aspect Target Sentiment Analysis on Foundation Models [0.8602553195689513]
Entity-Aspect Sentiment Triplet extract (EASTE)は、Aspect-Based Sentiment Analysisタスクである。
本研究は,EASTEタスクにおける高性能化を目標とし,モデルサイズ,タイプ,適応技術がタスクパフォーマンスに与える影響について検討する。
最終的には、複雑な感情分析における詳細な洞察と最先端の成果を提供する。
論文 参考訳(メタデータ) (2024-07-04T16:48:14Z) - Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
一般的に使われているユーザトークンモデルは、より複雑なモデルよりも一貫して優れています。
以上の結果から,コーパス統計とアノテータモデリング性能の関係が明らかになった。
論文 参考訳(メタデータ) (2024-04-02T22:27:24Z) - generAItor: Tree-in-the-Loop Text Generation for Language Model
Explainability and Adaptation [28.715001906405362]
大規模言語モデル(LLM)は、自動補完、補助的な書き込み、チャットベースのテキスト生成など、様々な下流タスクに広くデプロイされている。
本稿では,ビーム探索ツリーの視覚的表現を解析,説明,適応する中心的な要素とする,ループ内ツリーのアプローチを提案することで,この欠点に対処する。
視覚解析技術であるGenerAItorを,タスク固有のウィジェットで中央ビーム探索木を拡大し,ターゲットとした可視化とインタラクションの可能性を提供する。
論文 参考訳(メタデータ) (2024-03-12T13:09:15Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
機械学習の最近の進歩は、情報抽出の分野に大きな影響を与えている。
タスクをエンティティ中心にすることで、さまざまなメトリクスの使用を可能にします。
我々は、Structured Entity extractを導入し、Adroximate Entity Set OverlaPメトリックを提案し、この分野にコントリビュートします。
論文 参考訳(メタデータ) (2024-02-06T22:15:09Z) - Exploiting Contextual Target Attributes for Target Sentiment
Classification [53.30511968323911]
TSCの既存のPTLMベースモデルは、1)PTLMをコンテキストエンコーダとして採用した微調整ベースモデル、2)テキスト/単語生成タスクに分類タスクを転送するプロンプトベースモデル、の2つのグループに分類される。
我々は,PTLM を TSC に活用する新たな視点として,言語モデリングと文脈的ターゲット属性による明示的ターゲットコンテキスト相互作用の利点を同時に活用する。
論文 参考訳(メタデータ) (2023-12-21T11:45:28Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
テキスト埋め込みモデルが幅広い構文的文脈にまたがって一般化する能力は、まだ解明されていない。
その結果,既存のテキスト埋め込みモデルは,これらの構文的理解課題に十分対応していないことが明らかとなった。
多様な構文シナリオにおけるテキスト埋め込みモデルの一般化能力を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T08:51:00Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - A Unified Understanding of Deep NLP Models for Text Classification [88.35418976241057]
我々は、テキスト分類のためのNLPモデルの統一的な理解を可能にする視覚解析ツールDeepNLPVisを開発した。
主要なアイデアは相互情報に基づく尺度であり、モデルの各レイヤがサンプル内の入力語の情報をどのように保持するかを定量的に説明する。
コーパスレベル、サンプルレベル、単語レベルビジュアライゼーションで構成されるマルチレベルビジュアライゼーションは、全体トレーニングセットから個々のサンプルまでの分析をサポートする。
論文 参考訳(メタデータ) (2022-06-19T08:55:07Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Improving Compositional Generalization with Self-Training for
Data-to-Text Generation [36.973617793800315]
データ・テキスト・タスクにおける現在の生成モデルの合成一般化について検討する。
構成的気象データセットの構造変化をシミュレートすることにより、T5モデルは目に見えない構造に一般化できないことを示す。
擬似応答選択のための細調整BLEURTを用いた自己学習に基づく手法を提案する。
論文 参考訳(メタデータ) (2021-10-16T04:26:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。