論文の概要: EAGLE: A Domain Generalization Framework for AI-generated Text Detection
- arxiv url: http://arxiv.org/abs/2403.15690v1
- Date: Sat, 23 Mar 2024 02:44:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 21:32:08.115670
- Title: EAGLE: A Domain Generalization Framework for AI-generated Text Detection
- Title(参考訳): EAGLE:AI生成テキスト検出のためのドメイン一般化フレームワーク
- Authors: Amrita Bhattacharjee, Raha Moraffah, Joshua Garland, Huan Liu,
- Abstract要約: 本稿では,未知のターゲットジェネレータからAI生成テキストを検出するための領域一般化フレームワークを提案する。
我々は,未知のターゲットジェネレータが生成したテキストの検出において,我々のフレームワークがいかに効果的に優れた性能を実現するかを実証する。
- 参考スコア(独自算出の注目度): 15.254775341371364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advancement in capabilities of Large Language Models (LLMs), one major step in the responsible and safe use of such LLMs is to be able to detect text generated by these models. While supervised AI-generated text detectors perform well on text generated by older LLMs, with the frequent release of new LLMs, building supervised detectors for identifying text from such new models would require new labeled training data, which is infeasible in practice. In this work, we tackle this problem and propose a domain generalization framework for the detection of AI-generated text from unseen target generators. Our proposed framework, EAGLE, leverages the labeled data that is available so far from older language models and learns features invariant across these generators, in order to detect text generated by an unknown target generator. EAGLE learns such domain-invariant features by combining the representational power of self-supervised contrastive learning with domain adversarial training. Through our experiments we demonstrate how EAGLE effectively achieves impressive performance in detecting text generated by unseen target generators, including recent state-of-the-art ones such as GPT-4 and Claude, reaching detection scores of within 4.7% of a fully supervised detector.
- Abstract(参考訳): LLM(Large Language Models)の能力の進歩により、そのようなLLMの責任と安全な使用の1つの大きなステップは、これらのモデルによって生成されたテキストを検出することである。
教師付きAI生成テキスト検出器は、古いLLMが生成したテキスト上でよく機能するが、新しいLLMを頻繁にリリースする一方で、そのような新しいモデルからテキストを識別するための教師付き検出器を構築するには、実際には不可能な新しいラベル付きトレーニングデータが必要である。
本研究では,この課題に対処し,未知のターゲットジェネレータからAI生成テキストを検出するための領域一般化フレームワークを提案する。
提案するフレームワークであるEAGLEは,古い言語モデルから利用可能なラベル付きデータを活用し,未知のターゲットジェネレータによって生成されたテキストを検出するために,これらのジェネレータ間で不変な特徴を学習する。
EAGLEは、自己教師付きコントラスト学習の表現力とドメインの敵対的訓練を組み合わせることで、そのようなドメイン不変の特徴を学習する。
GPT-4やClaudeのような最近の最先端のテキストを含む、未確認のターゲットジェネレータが生成するテキストの検出において、EAGLEが、完全に教師された検出器の4.7%以内の検出スコアを効果的に達成する方法を実証した。
関連論文リスト
- Robust Detection of LLM-Generated Text: A Comparative Analysis [0.276240219662896]
大規模言語モデルは生命の多くの側面に広く統合することができ、その出力は全てのネットワークリソースを迅速に満たすことができる。
生成したテキストの強力な検出器を開発することがますます重要になっている。
この検出器は、これらの技術の潜在的な誤用を防ぎ、ソーシャルメディアなどのエリアを負の効果から保護するために不可欠である。
論文 参考訳(メタデータ) (2024-11-09T18:27:15Z) - DetectRL: Benchmarking LLM-Generated Text Detection in Real-World Scenarios [38.952481877244644]
我々は,最新技術(SOTA)検出技術でさえも,このタスクにおいてまだ性能が劣っていることを強調した新しいベンチマークであるTectorRLを提案する。
我々は,現在のSOTA検出器の強度と限界を明らかにした。
DetectRLは、実世界のシナリオにおける検出器の評価に有効なベンチマークになり得ると考えている。
論文 参考訳(メタデータ) (2024-10-31T09:01:25Z) - GigaCheck: Detecting LLM-generated Content [72.27323884094953]
本稿では,GigaCheckを提案することによって生成したテキスト検出の課題について検討する。
本研究は,LLM生成テキストとLLM生成テキストを区別する手法と,Human-Machine協調テキストにおけるLLM生成間隔を検出する手法について検討する。
具体的には,テキスト内のAI生成間隔をローカライズするために,コンピュータビジョンから適応したDETRのような検出モデルと組み合わせて,微調整の汎用LLMを用いる。
論文 参考訳(メタデータ) (2024-10-31T08:30:55Z) - Detecting AI-Generated Texts in Cross-Domains [3.2245324254437846]
ベースラインモデルとして,RoBERTa-Rankerというランキング分類器を訓練する。
次に、新しいドメインで少量のラベル付きデータしか必要としないRoBERTa-Rankerを微調整する手法を提案する。
実験により、この微調整されたドメイン認識モデルは、一般的なTectGPTとGPTZeroより優れていることが示された。
論文 参考訳(メタデータ) (2024-10-17T18:43:30Z) - Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
既存のゼロショット検出器は主に、現実世界のドメインシフトに弱いトークンレベルの分布に焦点を当てている。
本稿では,イベント遷移などの抽象的要素を機械対人文検出の鍵となる要因として組み込んだ,より堅牢な手法を提案する。
論文 参考訳(メタデータ) (2024-10-04T18:42:09Z) - Deciphering Textual Authenticity: A Generalized Strategy through the Lens of Large Language Semantics for Detecting Human vs. Machine-Generated Text [8.290557547578146]
プリトレーニング済みのT5エンコーダとLLM埋め込みサブクラスタリングを組み合わせた,機械生成テキスト検出システムT5LLMCipherを導入する。
提案手法は,機械生成テキストの平均F1スコアが19.6%増加し,非可視ジェネレータやドメインでF1スコアが平均上昇する,最先端の一般化能力を提供する。
論文 参考訳(メタデータ) (2024-01-17T18:45:13Z) - SeqXGPT: Sentence-Level AI-Generated Text Detection [62.3792779440284]
大規模言語モデル(LLM)を用いた文書の合成による文レベル検出の課題について紹介する。
次に,文レベルのAIGT検出機能として,ホワイトボックスLEMのログ確率リストを利用した textbfSequence textbfX (Check) textbfGPT を提案する。
論文 参考訳(メタデータ) (2023-10-13T07:18:53Z) - On the Zero-Shot Generalization of Machine-Generated Text Detectors [41.25534723956849]
大規模な言語モデルは、人間が書く言語と区別できないテキストを生成するのに十分な流動性を持っている。
この研究は重要な研究課題によって動機付けられている: 機械が生成したテキストの検出器は、新しい発電機の出力でどのように動作し、検出器が訓練されていないか?
論文 参考訳(メタデータ) (2023-10-08T13:49:51Z) - LLMDet: A Third Party Large Language Models Generated Text Detection
Tool [119.0952092533317]
大規模言語モデル(LLM)は、高品質な人間によるテキストに非常に近い。
既存の検出ツールは、機械が生成したテキストと人間によるテキストしか区別できない。
本稿では,モデル固有,セキュア,効率的,拡張可能な検出ツールであるLLMDetを提案する。
論文 参考訳(メタデータ) (2023-05-24T10:45:16Z) - MAGE: Machine-generated Text Detection in the Wild [82.70561073277801]
大規模言語モデル(LLM)は人間レベルのテキスト生成を実現し、効果的なAI生成テキスト検出の必要性を強調している。
我々は、異なるLLMによって生成される多様な人文やテキストからテキストを収集することで、包括的なテストベッドを構築する。
問題にもかかわらず、トップパフォーマンス検出器は、新しいLCMによって生成された86.54%のドメイン外のテキストを識別することができ、アプリケーションシナリオの実現可能性を示している。
論文 参考訳(メタデータ) (2023-05-22T17:13:29Z) - Can AI-Generated Text be Reliably Detected? [54.670136179857344]
LLMの規制されていない使用は、盗作、偽ニュースの生成、スパムなど、悪意のある結果をもたらす可能性がある。
最近の研究は、生成されたテキスト出力に存在する特定のモデルシグネチャを使用するか、透かし技術を適用してこの問題に対処しようとしている。
本稿では,これらの検出器は実用シナリオにおいて信頼性が低いことを示す。
論文 参考訳(メタデータ) (2023-03-17T17:53:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。