論文の概要: A hybrid LLM workflow can help identify user privilege related variables in programs of any size
- arxiv url: http://arxiv.org/abs/2403.15723v2
- Date: Tue, 9 Jul 2024 15:20:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 23:31:18.828053
- Title: A hybrid LLM workflow can help identify user privilege related variables in programs of any size
- Title(参考訳): ハイブリッドLLMワークフローは,任意のサイズのプログラムにおけるユーザ権限関連変数の識別を支援する
- Authors: Haizhou Wang, Zhilong Wang, Peng Liu,
- Abstract要約: 本稿では,ユーザ権限関連変数の識別を支援するために,大規模言語モデル(LLM)ワークフローを導入する。
具体的には、プログラム内のすべての変数を監査し、変数とユーザ特権の関係(クローズネス)の程度であるUPRスコアを出力する。
- 参考スコア(独自算出の注目度): 6.28442571510256
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many programs involves operations and logic manipulating user privileges, which is essential for the security of an organization. Therefore, one common malicious goal of attackers is to obtain or escalate the privileges, causing privilege leakage. To protect the program and the organization against privilege leakage attacks, it is important to eliminate the vulnerabilities which can be exploited to achieve such attacks. Unfortunately, while memory vulnerabilities are less challenging to find, logic vulnerabilities are much more imminent, harmful and difficult to identify. Accordingly, many analysts choose to find user privilege related (UPR) variables first as start points to investigate the code where the UPR variables may be used to see if there exists any vulnerabilities, especially the logic ones. In this paper, we introduce a large language model (LLM) workflow that can assist analysts in identifying such UPR variables, which is considered to be a very time-consuming task. Specifically, our tool will audit all the variables in a program and output a UPR score, which is the degree of relationship (closeness) between the variable and user privileges, for each variable. The proposed approach avoids the drawbacks introduced by directly prompting a LLM to find UPR variables by focusing on leverage the LLM at statement level instead of supplying LLM with very long code snippets. Those variables with high UPR scores are essentially potential UPR variables, which should be manually investigated. Our experiments show that using a typical UPR score threshold (i.e., UPR score >0.8), the false positive rate (FPR) is only 13.49%, while UPR variable found is significantly more than that of the heuristic based method.
- Abstract(参考訳): 多くのプログラムは、組織のセキュリティに不可欠な、ユーザー特権を操作する操作とロジックを含んでいる。
そのため、攻撃者の悪質な目標の1つは特権の取得またはエスカレーションであり、特権の漏洩を引き起こす。
プログラムと組織を特権漏洩攻撃から保護するためには、そのような攻撃を達成するために利用される脆弱性を取り除くことが重要である。
残念なことに、メモリの脆弱性は見つけにくいが、ロジックの脆弱性はより差し迫ったものであり、有害で識別が難しい。
したがって、多くのアナリストは、まずユーザ権限関連変数(UPR)をスタートポイントとして見つけ、UPR変数が脆弱性、特にロジック変数が存在するかどうかを調べるコードを調べる。
本稿では,大規模言語モデル(LLM)ワークフローを導入し,そのようなUPR変数の同定を支援する。
具体的には、プログラム内のすべての変数を監査し、変数とユーザ特権の関係度(クローズネス)であるUPRスコアを各変数に対して出力する。
提案手法は,非常に長いコードスニペットをLLMに供給するのではなく,ステートメントレベルでLLMを活用することに集中することにより,LLMに直接UPR変数を見つけるように促すことによって導入された欠点を回避する。
高いUPRスコアを持つ変数は、基本的に潜在的UPR変数であり、手動で調べるべきである。
実験の結果,典型的なUPRスコア閾値(UPRスコア>0.8)を用いて,偽陽性率(FPR)は13.49%であり,UPR変数はヒューリスティック法よりも有意に高いことがわかった。
関連論文リスト
- Human-Interpretable Adversarial Prompt Attack on Large Language Models with Situational Context [49.13497493053742]
我々は、状況駆動型文脈書き換えにより、無意味な接尾辞攻撃を意味のあるプロンプトに変換することを検討する。
我々は、独立して意味のある敵の挿入と映画から派生した状況を組み合わせて、LLMを騙せるかどうかを確認します。
当社のアプローチでは,オープンソースとプロプライエタリなLLMの両方で,状況駆動型攻撃を成功させることが実証されている。
論文 参考訳(メタデータ) (2024-07-19T19:47:26Z) - Uncertainty is Fragile: Manipulating Uncertainty in Large Language Models [79.76293901420146]
大規模言語モデル(LLM)は、出力の信頼性が不可欠である様々な高い領域で採用されている。
本研究では,不確実性推定の脆弱性を調査し,攻撃の可能性を探る。
攻撃者がLSMにバックドアを埋め込むことができ、入力中の特定のトリガーによって起動されると、最終的な出力に影響を与えることなくモデルの不確実性を操作できることを示す。
論文 参考訳(メタデータ) (2024-07-15T23:41:11Z) - Are you still on track!? Catching LLM Task Drift with Activations [55.75645403965326]
大規模言語モデル(LLM)は、ユーザや他のソースからの入力を処理したり、タスクを編成したりするための検索拡張されたアプリケーションで日常的に使用される。
これにより、LDMがデータのみのソースからの命令を受け取り、作用するインジェクション攻撃を誘導する扉が開き、ユーザーの元の命令から逸脱する。
我々はこれをタスクドリフトと定義し、LCMのアクティベーションをスキャンして解析することでこれをキャッチすることを提案する。
このアプローチは、これらの攻撃に対してトレーニングを受けることなく、インジェクションやジェイルブレイク、悪意のある指示など、目に見えないタスクドメインに対して驚くほどうまく一般化することを示す。
論文 参考訳(メタデータ) (2024-06-02T16:53:21Z) - Chain of Targeted Verification Questions to Improve the Reliability of Code Generated by LLMs [10.510325069289324]
LLMが生成するコードの信頼性向上を目的とした自己補充手法を提案する。
当社のアプローチは,初期コード内の潜在的なバグを特定するために,対象とする検証質問(VQ)に基づいています。
本手法は,LLMをターゲットとするVQと初期コードで再プロンプトすることで,潜在的なバグの修復を試みる。
論文 参考訳(メタデータ) (2024-05-22T19:02:50Z) - TrojanRAG: Retrieval-Augmented Generation Can Be Backdoor Driver in Large Language Models [16.71019302192829]
大規模言語モデル(LLM)は、自然言語処理(NLP)において顕著なパフォーマンスにもかかわらず、潜在的なセキュリティ脅威に対する懸念を提起している。
バックドア攻撃は当初、LLMがあらゆる段階で重大な損害を受けていることを証明したが、コストとロバスト性は批判されている。
本稿では,Retrieval-Augmented Generationにおいて,共同でバックドア攻撃を行うTrojanRAGを提案する。
論文 参考訳(メタデータ) (2024-05-22T07:21:32Z) - Defending Against Indirect Prompt Injection Attacks With Spotlighting [11.127479817618692]
一般的なアプリケーションでは、複数の入力は1つのテキストストリームにまとめることで処理できる。
間接的なプロンプトインジェクション攻撃は、ユーザコマンドと共に処理されている信頼できないデータに、敵命令を埋め込むことによって、この脆弱性を利用する。
我々は,複数の入力源を識別するLLMの能力を向上させるために,迅速なエンジニアリング技術群であるスポットライティングを紹介した。
論文 参考訳(メタデータ) (2024-03-20T15:26:23Z) - Code Prompting Elicits Conditional Reasoning Abilities in Text+Code LLMs [69.99031792995348]
自然言語の問題をコードに変換する一連のプロンプトであるコードプロンプトを導入します。
コードプロンプトは複数のLLMに対して高速に向上することがわかった。
GPT 3.5を解析した結果,入力問題のコードフォーマッティングが性能向上に不可欠であることが判明した。
論文 参考訳(メタデータ) (2024-01-18T15:32:24Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - Fake Alignment: Are LLMs Really Aligned Well? [91.26543768665778]
本研究では,複数質問とオープンエンド質問の相違点について検討した。
ジェイルブレイク攻撃パターンの研究にインスパイアされた我々は、これが不一致の一般化によって引き起こされたと論じている。
論文 参考訳(メタデータ) (2023-11-10T08:01:23Z) - GPT is becoming a Turing machine: Here are some ways to program it [16.169056235216576]
GPT-3モデルはループを含むプログラムを実行するために起動可能であることを示す。
1つのタスクの例をカバーすることさえできないプロンプトが、アルゴリズム的な振る舞いをトリガーできることを示します。
論文 参考訳(メタデータ) (2023-03-25T00:43:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。