Scaling Learning based Policy Optimization for Temporal Logic Tasks by Controller Network Dropout
- URL: http://arxiv.org/abs/2403.15826v2
- Date: Tue, 27 Aug 2024 22:18:07 GMT
- Title: Scaling Learning based Policy Optimization for Temporal Logic Tasks by Controller Network Dropout
- Authors: Navid Hashemi, Bardh Hoxha, Danil Prokhorov, Georgios Fainekos, Jyotirmoy Deshmukh,
- Abstract summary: We introduce a model-based approach for training feedback controllers for an autonomous agent operating in a highly nonlinear environment.
We show how this learning problem is similar to training recurrent neural networks (RNNs), where the number of recurrent units is proportional to the temporal horizon of the agent's task objectives.
We introduce a novel gradient approximation algorithm based on the idea of dropout or gradient sampling.
- Score: 4.421486904657393
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper introduces a model-based approach for training feedback controllers for an autonomous agent operating in a highly nonlinear (albeit deterministic) environment. We desire the trained policy to ensure that the agent satisfies specific task objectives and safety constraints, both expressed in Discrete-Time Signal Temporal Logic (DT-STL). One advantage for reformulation of a task via formal frameworks, like DT-STL, is that it permits quantitative satisfaction semantics. In other words, given a trajectory and a DT-STL formula, we can compute the {\em robustness}, which can be interpreted as an approximate signed distance between the trajectory and the set of trajectories satisfying the formula. We utilize feedback control, and we assume a feed forward neural network for learning the feedback controller. We show how this learning problem is similar to training recurrent neural networks (RNNs), where the number of recurrent units is proportional to the temporal horizon of the agent's task objectives. This poses a challenge: RNNs are susceptible to vanishing and exploding gradients, and na\"{i}ve gradient descent-based strategies to solve long-horizon task objectives thus suffer from the same problems. To tackle this challenge, we introduce a novel gradient approximation algorithm based on the idea of dropout or gradient sampling. One of the main contributions is the notion of {\em controller network dropout}, where we approximate the NN controller in several time-steps in the task horizon by the control input obtained using the controller in a previous training step. We show that our control synthesis methodology, can be quite helpful for stochastic gradient descent to converge with less numerical issues, enabling scalable backpropagation over long time horizons and trajectories over high dimensional state spaces.
Related papers
- Directed Exploration in Reinforcement Learning from Linear Temporal Logic [59.707408697394534]
Linear temporal logic (LTL) is a powerful language for task specification in reinforcement learning.
We show that the synthesized reward signal remains fundamentally sparse, making exploration challenging.
We show how better exploration can be achieved by further leveraging the specification and casting its corresponding Limit Deterministic B"uchi Automaton (LDBA) as a Markov reward process.
arXiv Detail & Related papers (2024-08-18T14:25:44Z) - Verified Compositional Neuro-Symbolic Control for Stochastic Systems
with Temporal Logic Tasks [11.614036749291216]
Several methods have been proposed recently to learn neural network (NN) controllers for autonomous agents.
A key challenge within these approaches is that they often lack safety guarantees or the provided guarantees are impractical.
This paper aims to address this challenge by checking if there exists a temporal composition of the trained NN controllers.
arXiv Detail & Related papers (2023-11-17T20:51:24Z) - Diffusion Generative Flow Samplers: Improving learning signals through
partial trajectory optimization [87.21285093582446]
Diffusion Generative Flow Samplers (DGFS) is a sampling-based framework where the learning process can be tractably broken down into short partial trajectory segments.
Our method takes inspiration from the theory developed for generative flow networks (GFlowNets)
arXiv Detail & Related papers (2023-10-04T09:39:05Z) - Accelerated Reinforcement Learning for Temporal Logic Control Objectives [10.216293366496688]
This paper addresses the problem of learning control policies for mobile robots modeled as unknown Markov Decision Processes (MDPs)
We propose a novel accelerated model-based reinforcement learning (RL) algorithm for control objectives that is capable of learning control policies significantly faster than related approaches.
arXiv Detail & Related papers (2022-05-09T17:09:51Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
We consider the problem of scheduling in constrained queueing networks with a view to minimizing packet delay.
We use a policy gradient based reinforcement learning algorithm that produces a scheduler that performs better than the available atomic policies.
arXiv Detail & Related papers (2021-05-01T10:18:34Z) - Control of Stochastic Quantum Dynamics with Differentiable Programming [0.0]
We propose a framework for the automated design of control schemes based on differentiable programming.
We apply this approach to state preparation and stabilization of a qubit subjected to homodyne detection.
Despite the resulting poor signal-to-noise ratio, we can train our controller to prepare and stabilize the qubit to a target state with a mean fidelity around 85%.
arXiv Detail & Related papers (2021-01-04T19:00:03Z) - Trajectory Planning for Autonomous Vehicles Using Hierarchical
Reinforcement Learning [21.500697097095408]
Planning safe trajectories under uncertain and dynamic conditions makes the autonomous driving problem significantly complex.
Current sampling-based methods such as Rapidly Exploring Random Trees (RRTs) are not ideal for this problem because of the high computational cost.
We propose a Hierarchical Reinforcement Learning structure combined with a Proportional-Integral-Derivative (PID) controller for trajectory planning.
arXiv Detail & Related papers (2020-11-09T20:49:54Z) - Policy Gradient for Continuing Tasks in Non-stationary Markov Decision
Processes [112.38662246621969]
Reinforcement learning considers the problem of finding policies that maximize an expected cumulative reward in a Markov decision process with unknown transition probabilities.
We compute unbiased navigation gradients of the value function which we use as ascent directions to update the policy.
A major drawback of policy gradient-type algorithms is that they are limited to episodic tasks unless stationarity assumptions are imposed.
arXiv Detail & Related papers (2020-10-16T15:15:42Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
partitioned edge learning (PARTEL) implements parameter-server training, a well known distributed learning method, in wireless network.
We consider the case of deep neural network (DNN) models which can be trained using PARTEL by introducing some auxiliary variables.
arXiv Detail & Related papers (2020-10-08T15:27:50Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - Continuous Motion Planning with Temporal Logic Specifications using Deep
Neural Networks [16.296473750342464]
We propose a model-free reinforcement learning method to synthesize control policies for motion planning problems.
The robot is modelled as a discrete Markovtime decision process (MDP) with continuous state and action spaces.
We train deep neural networks to approximate the value function and policy using an actorcritic reinforcement learning method.
arXiv Detail & Related papers (2020-04-02T17:58:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.