論文の概要: Automated System-level Testing of Unmanned Aerial Systems
- arxiv url: http://arxiv.org/abs/2403.15857v1
- Date: Sat, 23 Mar 2024 14:47:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 20:42:03.578121
- Title: Automated System-level Testing of Unmanned Aerial Systems
- Title(参考訳): 無人航空システムのシステムレベル自動試験
- Authors: Hassan Sartaj, Asmar Muqeet, Muhammad Zohaib Iqbal, Muhammad Uzair Khan,
- Abstract要約: 国際安全基準の主な要件は、アビオニクスソフトウェアシステムの厳格なシステムレベルのテストを実行することである。
提案したアプローチ(AITester)は、モデルベースのテストと人工知能(AI)技術を使用して、さまざまなテストシナリオを自動生成、実行、評価する。
- 参考スコア(独自算出の注目度): 2.2249176072603634
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unmanned aerial systems (UAS) rely on various avionics systems that are safety-critical and mission-critical. A major requirement of international safety standards is to perform rigorous system-level testing of avionics software systems. The current industrial practice is to manually create test scenarios, manually/automatically execute these scenarios using simulators, and manually evaluate outcomes. The test scenarios typically consist of setting certain flight or environment conditions and testing the system under test in these settings. The state-of-the-art approaches for this purpose also require manual test scenario development and evaluation. In this paper, we propose a novel approach to automate the system-level testing of the UAS. The proposed approach (AITester) utilizes model-based testing and artificial intelligence (AI) techniques to automatically generate, execute, and evaluate various test scenarios. The test scenarios are generated on the fly, i.e., during test execution based on the environmental context at runtime. The approach is supported by a toolset. We empirically evaluate the proposed approach on two core components of UAS, an autopilot system of an unmanned aerial vehicle (UAV) and cockpit display systems (CDS) of the ground control station (GCS). The results show that the AITester effectively generates test scenarios causing deviations from the expected behavior of the UAV autopilot and reveals potential flaws in the GCS-CDS.
- Abstract(参考訳): 無人航空システム(UAS)は、安全クリティカルでミッションクリティカルな様々なアビオニクスシステムに依存している。
国際安全基準の主な要件は、アビオニクスソフトウェアシステムの厳格なシステムレベルのテストを実行することである。
現在の産業的なプラクティスは、手動でテストシナリオを作成し、シミュレータを使ってこれらのシナリオを手動/自動で実行し、成果を手動で評価することです。
テストシナリオは一般的に、特定の飛行条件や環境条件を設定し、これらの設定でテスト中のシステムをテストする。
この目的のための最先端のアプローチは、手動のテストシナリオの開発と評価も必要である。
本稿では,UASのシステムレベルのテストを自動化する新しい手法を提案する。
提案したアプローチ(AITester)は、モデルベースのテストと人工知能(AI)技術を使用して、さまざまなテストシナリオを自動生成、実行、評価する。
テストシナリオは、実行時の環境コンテキストに基づいてテスト実行中に、即時に生成される。
このアプローチはツールセットによってサポートされます。
地上管制局(GCS)の無人航空機(UAV)のオートパイロットシステムとコックピット表示システム(CDS)の2つのコアコンポーネントに対する提案手法を実証的に評価した。
その結果,AITesterはUAVオートパイロットの期待される動作から逸脱するテストシナリオを効果的に生成し,GCS-CDSの潜在的な欠陥を明らかにすることができた。
関連論文リスト
- A Requirements-Driven Platform for Validating Field Operations of Small
Uncrewed Aerial Vehicles [48.67061953896227]
DroneReqValidator (DRV)は、sUAS開発者が運用コンテキストを定義し、複数のsUASミッション要件を設定し、安全性特性を指定し、独自のsUASアプリケーションを高忠実な3D環境にデプロイすることを可能にする。
DRVモニタリングシステムは、sUASと環境からランタイムデータを収集し、安全特性のコンプライアンスを分析し、違反をキャプチャする。
論文 参考訳(メタデータ) (2023-07-01T02:03:49Z) - AmbieGen: A Search-based Framework for Autonomous Systems Testing [12.93632948681342]
AmbieGenは、自律システムのための検索ベースのテストケース生成フレームワークである。
自律ロボットのテストケース生成と自動車線維持支援システムをサポートする。
論文 参考訳(メタデータ) (2023-01-01T23:42:32Z) - A Survey on Scenario-Based Testing for Automated Driving Systems in
High-Fidelity Simulation [26.10081199009559]
道路上でシステムをテストすることは、現実世界と望ましいアプローチに最も近いが、非常にコストがかかる。
一般的な選択肢は、ADSのパフォーマンスを、よく設計されたシナリオ、すなわちシナリオベースのテストで評価することである。
高忠実度シミュレータはこの設定で、何のシナリオかをテストする際の柔軟性と利便性を最大化するために広く使われている。
論文 参考訳(メタデータ) (2021-12-02T03:41:33Z) - Complete Agent-driven Model-based System Testing for Autonomous Systems [0.0]
複雑な自律輸送システムをテストするための新しいアプローチについて述べる。
検証と検証に関して最も重大な問題のいくつかを軽減することを目的としている。
論文 参考訳(メタデータ) (2021-10-25T01:55:24Z) - Sample-Efficient Safety Assurances using Conformal Prediction [57.92013073974406]
早期警戒システムは、安全でない状況が差し迫ったときに警告を提供することができる。
安全性を確実に向上させるためには、これらの警告システムは証明可能な偽陰性率を持つべきである。
本稿では,共形予測と呼ばれる統計的推論手法とロボット・環境力学シミュレータを組み合わせたフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-28T23:00:30Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
複雑なGPSを用いた複雑な環境において,UAVのチームが協調して目標を探索し,発見するための枠組みを提案する。
UAVのチームは自律的にナビゲートし、探索し、検出し、既知の地図で散らばった環境でターゲットを見つける。
その結果, 提案方式は, 時間的コスト, 調査対象地域の割合, 捜索・救助ミッションの成功率などの面で改善されていることがわかった。
論文 参考訳(メタデータ) (2021-07-19T12:54:04Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
センサシミュレーションは高価であり,領域ギャップが大きいため,センサシミュレーションに代わる方法を提案する。
我々は、自動運転車の知覚と予測システムの出力を直接シミュレートし、現実的な動き計画テストを可能にする。
論文 参考訳(メタデータ) (2020-08-13T17:20:02Z) - Towards Automated Safety Coverage and Testing for Autonomous Vehicles
with Reinforcement Learning [0.3683202928838613]
検証は、システムが日々の運転で遭遇する可能性のあるシナリオや状況において、自動運転車システムをテストに投入する。
本稿では,AVソフトウェア実装における障害事例と予期せぬ交通状況を生成するために強化学習(RL)を提案する。
論文 参考訳(メタデータ) (2020-05-22T19:00:38Z) - Search-based Test-Case Generation by Monitoring Responsibility Safety
Rules [2.1270496914042996]
本研究では,シミュレーションに基づく運転テストデータのスクリーニングと分類を行う手法を提案する。
本フレームワークは,S-TALIROおよびSim-ATAVツールとともに配布されている。
論文 参考訳(メタデータ) (2020-04-25T10:10:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。