論文の概要: Leveraging Zero-Shot Prompting for Efficient Language Model Distillation
- arxiv url: http://arxiv.org/abs/2403.15886v1
- Date: Sat, 23 Mar 2024 16:51:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 20:32:18.565511
- Title: Leveraging Zero-Shot Prompting for Efficient Language Model Distillation
- Title(参考訳): 効率的な言語モデル蒸留のためのゼロショットプロンプトの活用
- Authors: Lukas Vöge, Vincent Gurgul, Stefan Lessmann,
- Abstract要約: 本稿では, LLMをより小さく, アプリケーション固有のモデルに効率よく蒸留する方法を提案する。
LLMの推論機能を利用してラベルを生成し、ラベルのないデータに対して自然言語の合理性を生成する。
主な貢献は、教師モデルの合理性を引き出すため、ゼロショットの雇用である。
- 参考スコア(独自算出の注目度): 3.4205390087622582
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper introduces a novel approach for efficiently distilling LLMs into smaller, application-specific models, significantly reducing operational costs and manual labor. Addressing the challenge of deploying computationally intensive LLMs in specific applications or edge devices, this technique utilizes LLMs' reasoning capabilities to generate labels and natural language rationales for unlabeled data. Our approach enhances both finetuning and distillation by employing a multi-task training framework where student models mimic these rationales alongside teacher predictions. Key contributions include the employment of zero-shot prompting to elicit teacher model rationales, reducing the necessity for handcrafted few-shot examples and lowering the overall token count required, which directly translates to cost savings given the pay-per-token billing model of major tech companies' LLM APIs. Additionally, the paper investigates the impact of explanation properties on distillation efficiency, demonstrating that minimal performance loss occurs even when rationale augmentation is not applied across the entire dataset, facilitating further reductions of tokens. This research marks a step toward the efficient training of task-specific models with minimal human intervention, offering substantial cost-savings while maintaining, or even enhancing, performance.
- Abstract(参考訳): 本稿では, LLMをより小さく, アプリケーション固有のモデルに効率よく蒸留し, 作業コストと手作業量を大幅に削減する手法を提案する。
特定のアプリケーションやエッジデバイスに計算集約的なLLMをデプロイするという課題に対処するため、この技術はラベルとラベルなしデータに対する自然言語の有理性を生成するためにLLMの推論能力を利用する。
提案手法は,教師の予測とともに,学生モデルがこれらの有理を模倣するマルチタスク学習フレームワークを利用することで,微細化と蒸留の両面を強化する。
主な貢献は、教師モデルの合理性を引き出すよう促すゼロショットの採用、手作りの少数ショットのサンプルの必要性を減らし、全体的なトークン数を減らすことであり、これは大手テック企業のLLM APIの有料請求モデルを考えると、直接的にコスト削減に繋がる。
さらに, 蒸留効率に及ぼす説明特性の影響について検討し, 合理的な拡張がデータセット全体に適用されない場合でも, 最小性能の損失が生じることを実証し, トークンのさらなる削減を図った。
この研究は、人間の介入を最小限に抑えたタスク固有のモデルの効率的なトレーニングへの一歩であり、パフォーマンスを維持したり、強化したりしながら、かなりのコスト削減を提供する。
関連論文リスト
- Learning with Less: Knowledge Distillation from Large Language Models via Unlabeled Data [54.934578742209716]
現実世界のNLPアプリケーションでは、Large Language Models (LLMs) は巨大なデータセットの広範なトレーニングのために、有望なソリューションを提供する。
LLKDは、教師と学生の両方の信号を組み込んだ適応的なサンプル選択法である。
総合的な実験により,LLKDは高いデータ効率で,様々なデータセットで優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-11-12T18:57:59Z) - Rational Metareasoning for Large Language Models [5.5539136805232205]
大きな言語モデル(LLM)を使用するためのコアテクニックとして,推論への関与を促す声が上がっている。
本研究は,認知科学で用いられるメタレゾニングの計算モデルに基づく新しいアプローチを導入する。
我々は不必要な推論を罰することで計算の価値を組み込む報酬関数を開発する。
論文 参考訳(メタデータ) (2024-10-07T23:48:52Z) - Understanding the Performance and Estimating the Cost of LLM Fine-Tuning [9.751868268608675]
コスト効率の良い特定のタスクのための微調整大型言語モデル(LLM)。
本稿では,Sparse Mixture of Experts (MoE)をベースとしたLLMファインチューニングを特徴付ける。
また,クラウド上でのLCM微調整のコストを推定するための解析モデルを開発し,検証する。
論文 参考訳(メタデータ) (2024-08-08T16:26:07Z) - Enabling Natural Zero-Shot Prompting on Encoder Models via Statement-Tuning [55.265138447400744]
ステートメントチューニングは、有限文の集合として識別タスクをモデル化し、エンコーダモデルを訓練し、潜在的なステートメントを識別してラベルを決定するテクニックである。
その結果, ステートメント・チューニングは, パラメータが著しく少ない最先端のLCMと比較して, 競争性能が向上することを示した。
この研究は、いくつかの設計選択が少ショットとゼロショットの一般化に与える影響を調査し、ステートメントチューニングが控えめなトレーニングデータで高いパフォーマンスを達成できることを明らかにした。
論文 参考訳(メタデータ) (2024-04-19T14:05:03Z) - SMART: Automatically Scaling Down Language Models with Accuracy Guarantees for Reduced Processing Fees [21.801053526411415]
大規模言語モデル(LLM)は自然言語処理(NLP)タスクの性能を大幅に向上させた。
高性能LLMの配備は、主にモデル性能の向上を目的としたパラメータの増大により、かなりのコストがかかる。
SMARTは,NLPタスクの推論コストを最小限に抑えつつ,十分な結果品質を確保するために設計された新しいフレームワークである。
論文 参考訳(メタデータ) (2024-03-11T17:45:47Z) - ELAD: Explanation-Guided Large Language Models Active Distillation [16.243249111524403]
LLM(Large Language Models)のデプロイメントと適用は、そのメモリ非効率性、計算要求、API推論の高コストによって妨げられている。
LLMの能力をより小さなモデルに伝達する伝統的な蒸留法は、知識が十分に伝達されているかどうかを判断できないことが多い。
本稿では,アノテーションコストとモデル性能のバランスを最適化するために,アクティブラーニング戦略を用いた説明誘導型ELAD(Explaination-Guided LLMs Active Distillation)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-20T15:47:59Z) - An Experimental Design Framework for Label-Efficient Supervised Finetuning of Large Language Models [55.01592097059969]
命令データセットの監視された微調整は、目覚ましいゼロショットの一般化能力を達成する上で重要な役割を担っている。
アクティブラーニングは、未ラベルのプールからアノテートするサンプルの有用なサブセットを特定するのに効果的である。
本研究では,能動学習の計算ボトルネックを回避するための実験設計を提案する。
論文 参考訳(メタデータ) (2024-01-12T16:56:54Z) - Boosting Inference Efficiency: Unleashing the Power of Parameter-Shared
Pre-trained Language Models [109.06052781040916]
本稿ではパラメータ共有言語モデルの推論効率を向上させる手法を提案する。
また、完全あるいは部分的に共有されたモデルにつながる単純な事前学習手法を提案する。
その結果,本手法が自己回帰的および自己符号化的PLMに与える影響が示された。
論文 参考訳(メタデータ) (2023-10-19T15:13:58Z) - Scaled Prompt-Tuning for Few-Shot Natural Language Generation [9.399840807973545]
大きな言語モデル(LLM)は、より強力な言語理解と生成能力を示す。
下流タスクにおける微調整LDMのメモリ需要と計算コストは無視できない。
本稿では,従来のPTよりも優れた性能と一般化能力を持つスケールド・プロンプト・チューニング(SPT)手法を提案する。
論文 参考訳(メタデータ) (2023-09-13T07:12:31Z) - Language models are weak learners [71.33837923104808]
本研究では,プロンプトベースの大規模言語モデルは弱い学習者として効果的に動作可能であることを示す。
これらのモデルをブースティングアプローチに組み込むことで、モデル内の知識を活用して、従来のツリーベースのブースティングよりも優れています。
結果は、プロンプトベースのLLMが、少数の学習者だけでなく、より大きな機械学習パイプラインのコンポーネントとして機能する可能性を示している。
論文 参考訳(メタデータ) (2023-06-25T02:39:19Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
複数のタスク入力を処理するために,LLMのコンテキスト内学習機能を活用したOverPromptを提案する。
本実験により,OverPromptはタスク性能を著しく損なうことなく,コスト効率の良いゼロショット分類を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-05-24T10:08:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。