Deep Gaussian Covariance Network with Trajectory Sampling for Data-Efficient Policy Search
- URL: http://arxiv.org/abs/2403.15908v1
- Date: Sat, 23 Mar 2024 18:42:22 GMT
- Title: Deep Gaussian Covariance Network with Trajectory Sampling for Data-Efficient Policy Search
- Authors: Can Bogoclu, Robert Vosshall, Kevin Cremanns, Dirk Roos,
- Abstract summary: Probabilistic world models increase data efficiency of model-based reinforcement learning (MBRL)
We propose to combine trajectory sampling and deep Gaussian covariance network (DGCN) for a data-efficient solution to MBRL problems.
We provide empirical evidence using four different well-known test environments, that our method improves the sample-efficiency over other combinations of uncertainty propagation methods and probabilistic models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Probabilistic world models increase data efficiency of model-based reinforcement learning (MBRL) by guiding the policy with their epistemic uncertainty to improve exploration and acquire new samples. Moreover, the uncertainty-aware learning procedures in probabilistic approaches lead to robust policies that are less sensitive to noisy observations compared to uncertainty unaware solutions. We propose to combine trajectory sampling and deep Gaussian covariance network (DGCN) for a data-efficient solution to MBRL problems in an optimal control setting. We compare trajectory sampling with density-based approximation for uncertainty propagation using three different probabilistic world models; Gaussian processes, Bayesian neural networks, and DGCNs. We provide empirical evidence using four different well-known test environments, that our method improves the sample-efficiency over other combinations of uncertainty propagation methods and probabilistic models. During our tests, we place particular emphasis on the robustness of the learned policies with respect to noisy initial states.
Related papers
- Improved off-policy training of diffusion samplers [93.66433483772055]
We study the problem of training diffusion models to sample from a distribution with an unnormalized density or energy function.
We benchmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods.
Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work.
arXiv Detail & Related papers (2024-02-07T18:51:49Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Distributionally Robust Skeleton Learning of Discrete Bayesian Networks [9.46389554092506]
We consider the problem of learning the exact skeleton of general discrete Bayesian networks from potentially corrupted data.
We propose to optimize the most adverse risk over a family of distributions within bounded Wasserstein distance or KL divergence to the empirical distribution.
We present efficient algorithms and show the proposed methods are closely related to the standard regularized regression approach.
arXiv Detail & Related papers (2023-11-10T15:33:19Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
We propose alternatives to the commonly used finite differences-based method.
We evaluate these methods in terms of applicability to problems, similar to the real ones, and their ability to ensure the convergence of equation discovery algorithms.
arXiv Detail & Related papers (2023-11-09T23:32:06Z) - Probabilistic Reach-Avoid for Bayesian Neural Networks [71.67052234622781]
We show that an optimal synthesis algorithm can provide more than a four-fold increase in the number of certifiable states.
The algorithm is able to provide more than a three-fold increase in the average guaranteed reach-avoid probability.
arXiv Detail & Related papers (2023-10-03T10:52:21Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - On Uncertainty Calibration and Selective Generation in Probabilistic
Neural Summarization: A Benchmark Study [14.041071717005362]
Modern deep models for summarization attains impressive benchmark performance, but they are prone to generating miscalibrated predictive uncertainty.
This means that they assign high confidence to low-quality predictions, leading to compromised reliability and trustworthiness in real-world applications.
Probabilistic deep learning methods are common solutions to the miscalibration problem, but their relative effectiveness in complex autoregressive summarization tasks are not well-understood.
arXiv Detail & Related papers (2023-04-17T23:06:28Z) - Robust Learning via Ensemble Density Propagation in Deep Neural Networks [6.0122901245834015]
We formulate the problem of density propagation through layers of a deep neural network (DNN) and solve it using an Ensemble Density propagation scheme.
Experiments using MNIST and CIFAR-10 datasets show a significant improvement in the robustness of the trained models to random noise and adversarial attacks.
arXiv Detail & Related papers (2021-11-10T21:26:08Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - Distributionally Robust Chance Constrained Programming with Generative
Adversarial Networks (GANs) [0.0]
A novel generative adversarial network (GAN) based data-driven distributionally robust chance constrained programming framework is proposed.
GAN is applied to fully extract distributional information from historical data in a nonparametric and unsupervised way.
The proposed framework is then applied to supply chain optimization under demand uncertainty.
arXiv Detail & Related papers (2020-02-28T00:05:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.