Disentangling Uncertainties by Learning Compressed Data Representation
- URL: http://arxiv.org/abs/2503.15801v1
- Date: Thu, 20 Mar 2025 02:37:48 GMT
- Title: Disentangling Uncertainties by Learning Compressed Data Representation
- Authors: Zhiyu An, Zhibo Hou, Wan Du,
- Abstract summary: We propose a framework that learns a neural network encoding of the data distribution and enables direct sampling from the output distribution.<n>Our approach incorporates a novel inference procedure based on Langevin dynamics sampling, allowing CDRM to predict arbitrary output distributions.
- Score: 2.959687944707463
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study aleatoric and epistemic uncertainty estimation in a learned regressive system dynamics model. Disentangling aleatoric uncertainty (the inherent randomness of the system) from epistemic uncertainty (the lack of data) is crucial for downstream tasks such as risk-aware control and reinforcement learning, efficient exploration, and robust policy transfer. While existing approaches like Gaussian Processes, Bayesian networks, and model ensembles are widely adopted, they suffer from either high computational complexity or inaccurate uncertainty estimation. To address these limitations, we propose the Compressed Data Representation Model (CDRM), a framework that learns a neural network encoding of the data distribution and enables direct sampling from the output distribution. Our approach incorporates a novel inference procedure based on Langevin dynamics sampling, allowing CDRM to predict arbitrary output distributions rather than being constrained to a Gaussian prior. Theoretical analysis provides the conditions where CDRM achieves better memory and computational complexity compared to bin-based compression methods. Empirical evaluations show that CDRM demonstrates a superior capability to identify aleatoric and epistemic uncertainties separately, achieving AUROCs of 0.8876 and 0.9981 on a single test set containing a mixture of both uncertainties. Qualitative results further show that CDRM's capability extends to datasets with multimodal output distributions, a challenging scenario where existing methods consistently fail. Code and supplementary materials are available at https://github.com/ryeii/CDRM.
Related papers
- Certainly Bot Or Not? Trustworthy Social Bot Detection via Robust Multi-Modal Neural Processes [28.951832771823128]
Social bot detection is crucial for mitigating misinformation, online manipulation, and coordinated inauthentic behavior.<n>Existing neural network-based detectors struggle with generalization due to distribution shifts across datasets.<n>We introduce a novel Uncertainty Estimation for Social Bot Detection framework, which quantifies the predictive uncertainty of detectors beyond mere classification.
arXiv Detail & Related papers (2025-03-11T01:32:52Z) - Deep Gaussian Covariance Network with Trajectory Sampling for Data-Efficient Policy Search [0.0]
Probabilistic world models increase data efficiency of model-based reinforcement learning (MBRL)
We propose to combine trajectory sampling and deep Gaussian covariance network (DGCN) for a data-efficient solution to MBRL problems.
We provide empirical evidence using four different well-known test environments, that our method improves the sample-efficiency over other combinations of uncertainty propagation methods and probabilistic models.
arXiv Detail & Related papers (2024-03-23T18:42:22Z) - Estimating Epistemic and Aleatoric Uncertainty with a Single Model [5.871583927216653]
We introduce a new approach to ensembling, hyper-diffusion models (HyperDM)
HyperDM offers prediction accuracy on par with, and in some cases superior to, multi-model ensembles.
We validate our method on two distinct real-world tasks: x-ray computed tomography reconstruction and weather temperature forecasting.
arXiv Detail & Related papers (2024-02-05T19:39:52Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - The Curious Price of Distributional Robustness in Reinforcement Learning with a Generative Model [61.87673435273466]
This paper investigates model robustness in reinforcement learning (RL) to reduce the sim-to-real gap in practice.
We adopt the framework of distributionally robust Markov decision processes (RMDPs), aimed at learning a policy that optimize the worst-case performance when the deployed environment falls within a prescribed uncertainty set around the nominal MDP.
arXiv Detail & Related papers (2023-05-26T02:32:03Z) - Data-driven Piecewise Affine Decision Rules for Stochastic Programming with Covariate Information [4.496931039007491]
We propose an empirical risk (M) method embedded within a non piecewise decision (PADR)
We show that the proposed PADR-based method applies to a broad, non-class non-constrained problem with theoretical consistency.
arXiv Detail & Related papers (2023-04-26T16:08:49Z) - Probabilities Are Not Enough: Formal Controller Synthesis for Stochastic
Dynamical Models with Epistemic Uncertainty [68.00748155945047]
Capturing uncertainty in models of complex dynamical systems is crucial to designing safe controllers.
Several approaches use formal abstractions to synthesize policies that satisfy temporal specifications related to safety and reachability.
Our contribution is a novel abstraction-based controller method for continuous-state models with noise, uncertain parameters, and external disturbances.
arXiv Detail & Related papers (2022-10-12T07:57:03Z) - Distributionally Robust Model-Based Offline Reinforcement Learning with
Near-Optimal Sample Complexity [39.886149789339335]
offline reinforcement learning aims to learn to perform decision making from history data without active exploration.
Due to uncertainties and variabilities of the environment, it is critical to learn a robust policy that performs well even when the deployed environment deviates from the nominal one used to collect the history dataset.
We consider a distributionally robust formulation of offline RL, focusing on robust Markov decision processes with an uncertainty set specified by the Kullback-Leibler divergence in both finite-horizon and infinite-horizon settings.
arXiv Detail & Related papers (2022-08-11T11:55:31Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.