論文の概要: Model, Analyze, and Comprehend User Interactions within a Social Media Platform
- arxiv url: http://arxiv.org/abs/2403.15937v2
- Date: Thu, 28 Nov 2024 05:29:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:14:49.014968
- Title: Model, Analyze, and Comprehend User Interactions within a Social Media Platform
- Title(参考訳): ソーシャルメディアプラットフォームにおけるユーザインタラクションのモデル、分析、および解析
- Authors: Md Kaykobad Reza, S M Maksudul Alam, Yiran Luo, Youzhe Liu, Md Siam,
- Abstract要約: ソーシャルメディアデータからユーザインタラクショングラフを構築し,それを解析し,コミュニティダイナミクスの洞察を得る。
本研究は,オンラインコミュニティの理解と管理のための包括的枠組みを提供する。
- 参考スコア(独自算出の注目度): 0.6990493129893112
- License:
- Abstract: In this study, we propose a novel graph-based approach to model, analyze and comprehend user interactions within a social media platform based on post-comment relationship. We construct a user interaction graph from social media data and analyze it to gain insights into community dynamics, user behavior, and content preferences. Our investigation reveals that while 56.05% of the active users are strongly connected within the community, only 0.8% of them significantly contribute to its dynamics. Moreover, we observe temporal variations in community activity, with certain periods experiencing heightened engagement. Additionally, our findings highlight a correlation between user activity and popularity showing that more active users are generally more popular. Alongside these, a preference for positive and informative content is also observed where 82.41% users preferred positive and informative content. Overall, our study provides a comprehensive framework for understanding and managing online communities, leveraging graph-based techniques to gain valuable insights into user behavior and community dynamics.
- Abstract(参考訳): 本研究では,投稿後関係に基づくソーシャルメディアプラットフォーム内でのユーザインタラクションをモデル化し,分析し,理解するための新しいグラフベースのアプローチを提案する。
ソーシャルメディアデータからユーザインタラクショングラフを構築し,それを分析して,コミュニティのダイナミクス,ユーザ行動,コンテンツ嗜好に関する洞察を得る。
我々の調査によると、アクティブユーザーの56.05%はコミュニティ内で強く結びついているが、そのダイナミクスに大きく貢献しているのはわずか0.8%である。
さらに,地域活動の時間的変動を観察し,特定の期間にエンゲージメントが高められた。
さらに,ユーザ活動と人気度との間には,よりアクティブなユーザの方が一般的に人気があることを示す相関関係があることが示唆された。
また, 82.41%のユーザが肯定的, 情報的コンテンツを好む場合, 肯定的, 情報的コンテンツを好む傾向が見られた。
本研究は総合的に,オンラインコミュニティの理解と管理のための総合的なフレームワークを提供し,ユーザ行動やコミュニティのダイナミクスに関する貴重な洞察を得るためにグラフベースの手法を活用している。
関連論文リスト
- Retrieval Augmentation via User Interest Clustering [57.63883506013693]
インダストリアルレコメンデータシステムは、ユーザ・イテム・エンゲージメントのパターンに敏感である。
本稿では,ユーザの関心を効率的に構築し,計算コストの低減を図る新しい手法を提案する。
当社のアプローチはMetaの複数の製品に展開されており、ショートフォームビデオ関連の推奨を助長しています。
論文 参考訳(メタデータ) (2024-08-07T16:35:10Z) - Characterizing User Archetypes and Discussions on Scored.co [0.6321194486116923]
ソーシャルハイパーネットワークにおけるノードとハイパーエッジを特徴付けるためのフレームワークを提案する。
Scored.coに焦点をあてる。
本研究は,社会的ダイナミクスの理解における高次相互作用の重要性を浮き彫りにした。
論文 参考訳(メタデータ) (2024-07-31T17:18:25Z) - SocialRec: User Activity Based Post Weighted Dynamic Personalized Post Recommendation System in Social Media [5.5997926295092295]
我々は、さまざまなトピックに関する投稿やエンゲージメントを含む、時間の経過とともにユーザー履歴を分析します。
ユーザのプロフィールを考慮し、彼らの活動とソーシャルメディアプラットフォームとの間のつながりを求める。
論文 参考訳(メタデータ) (2024-07-13T02:46:37Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSenseは、既存のソーシャルネットワーク上に信念中心のグラフを誘導するフレームワークであり、グラフベースの伝播によって社会的ダイナミクスを捉える。
本手法は,ゼロショット設定と教師あり設定の両方に対する実験的な評価において,既存の最先端技術を超えている。
論文 参考訳(メタデータ) (2023-10-20T06:17:02Z) - Personalizing Intervened Network for Long-tailed Sequential User
Behavior Modeling [66.02953670238647]
タイルユーザーは、共同トレーニング後のヘッドユーザーよりも大幅に品質の低いレコメンデーションに悩まされる。
テールユーザーで個別に訓練されたモデルは、限られたデータのために依然として劣った結果が得られる。
本稿では,テールユーザの推薦性能を大幅に向上させる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-08-19T02:50:19Z) - Estimating Topic Exposure for Under-Represented Users on Social Media [25.963970325207892]
この研究は、観察されたデータに対する参加者の貢献を強調することに重点を置いている。
これらのユーザの行動分析の最初のステップは、公開されているが関与していないトピックを見つけることです。
本稿では,これらのユーザを特定し,トピックの露出を推定する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-07T19:37:41Z) - Graph Neural Networks with Dynamic and Static Representations for Social
Recommendation [13.645346050614855]
本稿では,ソーシャルレコメンデーション(GNN-DSR)のための動的および静的表現を備えたグラフニューラルネットワークを提案する。
注意機構は、対象ユーザに対するユーザの社会的影響と、所定のアイテムに対する相関項目の影響を集約するために使用される。
3つの実世界のレコメンデータシステムデータセットの実験は、GNN-DSRの有効性を検証する。
論文 参考訳(メタデータ) (2022-01-26T05:07:17Z) - User Interaction Analysis through Contrasting Websites Experience [4.14955672190455]
本研究では,Webサイトの利用状況と関連性に基づいて,Webサイトのユーザビリティを定量的に分析する。
我々は,ユーザインタラクションに基づく主観的知覚,視線追跡データ,表情を報告する。
一般に、ユーザインタラクションパラメータはウェブサイトセット間で大きく異なることが判明した。
論文 参考訳(メタデータ) (2022-01-10T20:43:19Z) - Personalized multi-faceted trust modeling to determine trust links in
social media and its potential for misinformation management [61.88858330222619]
ソーシャルメディアにおけるピア間の信頼関係を予測するためのアプローチを提案する。
本稿では,データ駆動型多面信頼モデルを提案する。
信頼を意識したアイテムレコメンデーションタスクで説明され、提案したフレームワークを大規模なYelpデータセットのコンテキストで評価する。
論文 参考訳(メタデータ) (2021-11-11T19:40:51Z) - Dual Side Deep Context-aware Modulation for Social Recommendation [50.59008227281762]
社会的関係と協調関係をモデル化する新しいグラフニューラルネットワークを提案する。
高次関係の上に、友人の情報とアイテムのアトラクションを捉えるために、双方向のコンテキスト認識変調を導入する。
論文 参考訳(メタデータ) (2021-03-16T11:08:30Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
本稿では,既存の深層学習に基づくソーシャルインタラクションのモデル化手法について詳細に分析する。
本稿では、これらの社会的相互作用を効果的に捉えるための知識に基づく2つのデータ駆動手法を提案する。
我々は,人間の軌道予測分野において,重要かつ欠落したコンポーネントであるTrajNet++を大規模に開発する。
論文 参考訳(メタデータ) (2020-07-07T17:19:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。