論文の概要: Characterizing User Archetypes and Discussions on Scored.co
- arxiv url: http://arxiv.org/abs/2407.21753v2
- Date: Fri, 22 Nov 2024 16:39:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:01:54.663499
- Title: Characterizing User Archetypes and Discussions on Scored.co
- Title(参考訳): ユーザアーチタイプの特徴とScored.coに関する議論
- Authors: Andrea Failla, Salvatore Citraro, Giulio Rossetti, Francesco Cauteruccio,
- Abstract要約: ソーシャルハイパーネットワークにおけるノードとハイパーエッジを特徴付けるためのフレームワークを提案する。
Scored.coに焦点をあてる。
本研究は,社会的ダイナミクスの理解における高次相互作用の重要性を浮き彫りにした。
- 参考スコア(独自算出の注目度): 0.6321194486116923
- License:
- Abstract: In recent years, the proliferation of social platforms has drastically transformed the way individuals interact, organize, and share information. In this scenario, we experience an unprecedented increase in the scale and complexity of interactions and, at the same time, little to no research about some fringe social platforms. In this paper, we present a multi-dimensional framework for characterizing nodes and hyperedges in social hypernetworks, with a focus on the understudied alt-right platform Scored.co. Our approach integrates the possibility of studying higher-order interactions, thanks to the hypernetwork representation, and various node features such as user activity, sentiment, and toxicity, with the aim to define distinct user archetypes and understand their roles within the network. Utilizing a comprehensive dataset from Scored.co, we analyze the dynamics of these archetypes over time and explore their interactions and influence within the community. The framework's versatility allows for detailed analysis of both individual user behaviors and broader social structures. Our findings highlight the importance of higher-order interactions in understanding social dynamics, offering new insights into the roles and behaviors that emerge in complex online environments.
- Abstract(参考訳): 近年、ソーシャルプラットフォームの普及は、個人間の交流、組織化、情報の共有の方法を大きく変えている。
このシナリオでは、対話の規模と複雑さが前例のない増加を経験します。
本稿では,ソーシャルハイパーネットワークにおけるノードとハイパーエッジを特徴付ける多次元フレームワークを提案する。
提案手法は,ハイパーネットワーク表現による高次インタラクションや,ユーザ活動や感情,毒性などのノードの特徴を,異なるユーザアーチタイプを定義し,ネットワーク内での役割を理解することを目的とした,高次インタラクションの研究の可能性を統合する。
Scored.coの包括的データセットを利用して、時間とともにこれらのアーチタイプのダイナミクスを分析し、コミュニティ内での相互作用と影響を探る。
このフレームワークの汎用性は、個々のユーザー行動とより広い社会構造の両方を詳細に分析することができる。
本研究は,複雑なオンライン環境に出現する役割や行動に対する新たな洞察を提供するとともに,社会的ダイナミクスを理解する上での高次相互作用の重要性を強調した。
関連論文リスト
- When LLM Meets Hypergraph: A Sociological Analysis on Personality via Online Social Networks [7.309233340654514]
本稿では,個人レベルのデータマイニングではなく,環境を考慮した視点で人格を社会学的に分析する枠組みを提案する。
ハイパーグラフノードをユーザとし,ハイパーグラフのハイパーエッジをソーシャル環境とする,効果的なハイパーグラフニューラルネットワークを設計する。
ユーザプロファイルデータ、性格特性、実世界のソーシャルプラットフォームから検出されたいくつかの環境を含む有用なデータセットを提供する。
論文 参考訳(メタデータ) (2024-07-04T01:43:52Z) - Self-supervised Hypergraph Representation Learning for Sociological
Analysis [52.514283292498405]
本稿では,データマイニング技術と社会学的行動基準のさらなる融合を支援するための基本的な方法論を提案する。
まず,効率的なハイパーグラフ認識と高速グラフ構築フレームワークを提案する。
第2に,ユーザからユーザへのソーシャルインフルエンスを学習するためのハイパーグラフベースニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-12-22T01:20:29Z) - Rethinking Trajectory Prediction via "Team Game" [118.59480535826094]
本稿では,対話型グループコンセンサスの概念を明示的に導入した,マルチエージェント軌道予測の新しい定式化について述べる。
チームスポーツと歩行者の2つのマルチエージェント設定において,提案手法は既存手法と比較して常に優れた性能を達成している。
論文 参考訳(メタデータ) (2022-10-17T07:16:44Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z) - Sparsity-aware neural user behavior modeling in online interaction
platforms [2.4036844268502766]
ユーザ行動モデリングのための一般化可能なニューラル表現学習フレームワークを開発する。
問題設定は、トランスダクティブおよびインダクティブな学習シナリオにまたがる。
ユーザの振る舞いを反映した情報のさまざまな側面を活用して、大規模にパーソナライズされた推論を可能にする。
論文 参考訳(メタデータ) (2022-02-28T00:27:11Z) - SSAGCN: Social Soft Attention Graph Convolution Network for Pedestrian
Trajectory Prediction [59.064925464991056]
ソーシャルソフトアテンショングラフ畳み込みネットワーク(SSAGCN)という新しい予測モデルを提案する。
SSAGCNは、歩行者間の社会的相互作用と歩行者と環境間のシーンインタラクションを同時に扱うことを目的としている。
公開データセットの実験は、SAGCNの有効性を証明し、最先端の結果を得た。
論文 参考訳(メタデータ) (2021-12-05T01:49:18Z) - SocialInteractionGAN: Multi-person Interaction Sequence Generation [0.0]
条件付き相互作用生成のための新しい対比アーキテクチャであるSocialInteractionGANを提示する。
本モデルは,再帰型エンコーダデコーダジェネレータネットワークとデュアルストリームディスクリミネータ上に構築する。
提案されたSocialInteractionGANは、対話する人々の高いリアリズムアクションシーケンスを生成することに成功していることを示す。
論文 参考訳(メタデータ) (2021-03-10T08:11:34Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
本稿では,既存の深層学習に基づくソーシャルインタラクションのモデル化手法について詳細に分析する。
本稿では、これらの社会的相互作用を効果的に捉えるための知識に基づく2つのデータ駆動手法を提案する。
我々は,人間の軌道予測分野において,重要かつ欠落したコンポーネントであるTrajNet++を大規模に開発する。
論文 参考訳(メタデータ) (2020-07-07T17:19:56Z) - I Know Where You Are Coming From: On the Impact of Social Media Sources
on AI Model Performance [79.05613148641018]
我々は、異なるソーシャルネットワークのマルチモーダルデータから学習する際、異なる機械学習モデルの性能について検討する。
最初の実験結果から,ソーシャルネットワークの選択がパフォーマンスに影響を及ぼすことが明らかとなった。
論文 参考訳(メタデータ) (2020-02-05T11:10:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。