Runtime Monitoring and Fault Detection for Neural Network-Controlled Systems
- URL: http://arxiv.org/abs/2403.16132v1
- Date: Sun, 24 Mar 2024 13:03:27 GMT
- Title: Runtime Monitoring and Fault Detection for Neural Network-Controlled Systems
- Authors: Jianglin Lan, Siyuan Zhan, Ron Patton, Xianxian Zhao,
- Abstract summary: This paper considers enhancing the runtime safety of nonlinear systems controlled by neural networks in the presence of disturbance and measurement noise.
A robustly stable interval observer is designed to generate sound and precise lower and upper bounds for the neural network, nonlinear function, and system state.
- Score: 4.749824105387292
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is an emerging trend in applying deep learning methods to control complex nonlinear systems. This paper considers enhancing the runtime safety of nonlinear systems controlled by neural networks in the presence of disturbance and measurement noise. A robustly stable interval observer is designed to generate sound and precise lower and upper bounds for the neural network, nonlinear function, and system state. The obtained interval is utilised to monitor the real-time system safety and detect faults in the system outputs or actuators. An adaptive cruise control vehicular system is simulated to demonstrate effectiveness of the proposed design.
Related papers
- Identification For Control Based on Neural Networks: Approximately Linearizable Models [42.15267357325546]
This work presents a control-oriented identification scheme for efficient control design and stability analysis of nonlinear systems.
Neural networks are used to identify a discrete-time nonlinear state-space model to approximate time-domain input-output behavior.
The network is constructed such that the identified model is approximately linearizable by feedback, ensuring that the control law trivially follows from the learning stage.
arXiv Detail & Related papers (2024-09-24T08:31:22Z) - Verification of Neural Network Control Systems in Continuous Time [1.5695847325697108]
We develop the first verification method for continuously-actuated neural network control systems.
We accomplish this by adding a level of abstraction to model the neural network controller.
We demonstrate the approach's efficacy by applying it to a vision-based autonomous airplane taxiing system.
arXiv Detail & Related papers (2024-05-31T19:39:48Z) - In-Distribution Barrier Functions: Self-Supervised Policy Filters that
Avoid Out-of-Distribution States [84.24300005271185]
We propose a control filter that wraps any reference policy and effectively encourages the system to stay in-distribution with respect to offline-collected safe demonstrations.
Our method is effective for two different visuomotor control tasks in simulation environments, including both top-down and egocentric view settings.
arXiv Detail & Related papers (2023-01-27T22:28:19Z) - Interval Reachability of Nonlinear Dynamical Systems with Neural Network
Controllers [5.543220407902113]
This paper proposes a computationally efficient framework, based on interval analysis, for rigorous verification of nonlinear continuous-time dynamical systems with neural network controllers.
Inspired by mixed monotone theory, we embed the closed-loop dynamics into a larger system using an inclusion function of the neural network and a decomposition function of the open-loop system.
We show that one can efficiently compute hyper-rectangular over-approximations of the reachable sets using a single trajectory of the embedding system.
arXiv Detail & Related papers (2023-01-19T06:46:36Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
In this paper, we investigate signal detection in multiple-input-multiple-output (MIMO) communication systems with hardware impairments.
It is difficult to train a deep neural network (DNN) with limited pilot signals, hindering its practical applications.
We design an efficient message passing based Bayesian signal detector, leveraging the unitary approximate message passing (UAMP) algorithm.
arXiv Detail & Related papers (2022-10-08T04:32:58Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
Real-time and accurate detecting of potential line failures is the first step to mitigating the extreme weather impact and activating emergency controls.
Power balance equations nonlinearity, increased uncertainty in generation during extreme events, and lack of grid observability compromise the efficiency of traditional data-driven failure detection methods.
This paper proposes a Physics-InformEd Line failure Detector (FIELD) that leverages grid topology information to reduce sample and time complexities and improve localization accuracy.
arXiv Detail & Related papers (2022-08-31T18:19:25Z) - Time-to-Green predictions for fully-actuated signal control systems with
supervised learning [56.66331540599836]
This paper proposes a time series prediction framework using aggregated traffic signal and loop detector data.
We utilize state-of-the-art machine learning models to predict future signal phases' duration.
Results based on an empirical data set from a fully-actuated signal control system in Zurich, Switzerland, show that machine learning models outperform conventional prediction methods.
arXiv Detail & Related papers (2022-08-24T07:50:43Z) - Continuous Lyapunov Controller and Chaotic Non-linear System
Optimization using Deep Machine Learning [0.0]
We present a novel approach for detecting early failure indicators of non-linear highly chaotic system.
The approach proposed continuously monitors the system and controller signals.
The deep neural model predicts the parameter values that would best counteract the expected system in-stability.
arXiv Detail & Related papers (2020-10-28T04:45:12Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
We study a class of nonlinear dynamical systems whose state transitions depend linearly on a known feature embedding of state-action pairs.
We propose an active learning approach that achieves this by repeating three steps: trajectory planning, trajectory tracking, and re-estimation of the system from all available data.
We show that our method estimates nonlinear dynamical systems at a parametric rate, similar to the statistical rate of standard linear regression.
arXiv Detail & Related papers (2020-06-18T04:54:11Z) - Physics-Informed Neural Networks for Non-linear System Identification
for Power System Dynamics [0.0]
This paper investigates the performance of Physics-Informed Neural Networks (PINN) for discovering the frequency dynamics of future power systems.
PINNs have the potential to address challenges such as the stronger non-linearities of low-inertia systems, increased measurement noise, and limited availability of data.
arXiv Detail & Related papers (2020-04-08T14:50:13Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.