Fusion of Minutia Cylinder Codes and Minutia Patch Embeddings for Latent Fingerprint Recognition
- URL: http://arxiv.org/abs/2403.16172v1
- Date: Sun, 24 Mar 2024 14:29:41 GMT
- Title: Fusion of Minutia Cylinder Codes and Minutia Patch Embeddings for Latent Fingerprint Recognition
- Authors: Yusuf Artan, Bensu Alkan Semiz,
- Abstract summary: We propose a fusion based local matching approach towards latent fingerprint recognition.
Proposed approach would integrate these handcrafted features with a recently proposed deep neural network embedding features in a multi-stage fusion approach.
- Score: 1.534667887016089
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Latent fingerprints are one of the most widely used forensic evidence by law enforcement agencies. However, latent recognition performance is far from the exemplary performance of sensor fingerprint recognition due to deformations and artifacts within these images. In this study, we propose a fusion based local matching approach towards latent fingerprint recognition. Recent latent recognition studies typically relied on local descriptor generation methods, in which either handcrafted minutiae features or deep neural network features are extracted around a minutia of interest, in the latent recognition process. Proposed approach would integrate these handcrafted features with a recently proposed deep neural network embedding features in a multi-stage fusion approach to significantly improve latent recognition results. Effectiveness of the proposed approach has been shown on several public and private data sets. As demonstrated in our experimental results, proposed method improves rank-1 identification accuracy by considerably for real-world datasets when compared to either the single usage of these features or existing state-of-the-art methods in the literature.
Related papers
- Latent fingerprint enhancement for accurate minutiae detection [8.996826918574463]
We propose a novel approach that uses generative adversary networks (GANs) to redefine Latent Fingerprint Enhancement (LFE)
By directly optimising the minutiae information during the generation process, the model produces enhanced latent fingerprints that exhibit exceptional fidelity to ground-truth instances.
Our framework integrates minutiae locations and orientation fields, ensuring the preservation of both local and structural fingerprint features.
arXiv Detail & Related papers (2024-09-18T08:35:31Z) - Enhancement-Driven Pretraining for Robust Fingerprint Representation
Learning [0.0]
We propose a unique method for deriving robust fingerprint representations by leveraging enhancement-based pre-training.
Our experimental results, tested on publicly available fingerprint datasets, reveal a marked improvement in verification performance.
arXiv Detail & Related papers (2024-02-16T17:36:56Z) - Advancing 3D finger knuckle recognition via deep feature learning [51.871256510747465]
Contactless 3D finger knuckle patterns have emerged as an effective biometric identifier due to its discriminativeness, visibility from a distance, and convenience.
Recent research has developed a deep feature collaboration network which simultaneously incorporates intermediate features from deep neural networks with multiple scales.
This paper advances this approach by investigating the possibility of learning a discriminative feature vector with the least possible dimension for representing 3D finger knuckle images.
arXiv Detail & Related papers (2023-01-07T20:55:16Z) - Fingerprint Image-Quality Estimation and its Application to
Multialgorithm Verification [56.128200319868526]
Signal-quality awareness has been found to increase recognition rates and to support decisions in multisensor environments significantly.
Here, we study the orientation tensor of fingerprint images to quantify signal impairments, such as noise, lack of structure, blur, with the help of symmetry descriptors.
The quantitative results favor quality awareness under all aspects, boosting recognition rates and fusing differently skilled experts efficiently as well as effectively.
arXiv Detail & Related papers (2022-11-24T12:17:49Z) - Pair-Relationship Modeling for Latent Fingerprint Recognition [25.435974669629374]
We propose a new scheme that can model the pair-relationship of two fingerprints directly as the similarity feature for recognition.
Experimental results on two databases show that the proposed method outperforms the state of the art.
arXiv Detail & Related papers (2022-07-02T11:31:31Z) - A high performance fingerprint liveness detection method based on
quality related features [66.41574316136379]
The system is tested on a highly challenging database comprising over 10,500 real and fake images.
The proposed solution proves to be robust to the multi-scenario dataset, and presents an overall rate of 90% correctly classified samples.
arXiv Detail & Related papers (2021-11-02T21:09:39Z) - ProxyFAUG: Proximity-based Fingerprint Augmentation [81.15016852963676]
ProxyFAUG is a rule-based, proximity-based method of fingerprint augmentation.
The best performing positioning method on this dataset is improved by 40% in terms of median error and 6% in terms of mean error, with the use of the augmented dataset.
arXiv Detail & Related papers (2021-02-04T15:59:30Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
Deep generative models have achieved a qualitatively new level of performance.
There are concerns on how this technology can be misused to spoof sensors, generate deep fakes, and enable misinformation at scale.
Our work enables a responsible disclosure of such state-of-the-art generative models, that allows researchers and companies to fingerprint their models.
arXiv Detail & Related papers (2020-12-16T03:51:54Z) - Experimental results on palmvein-based personal recognition by
multi-snapshot fusion of textural features [3.274290296343038]
We investigate multiple snapshot fusion of textural features for palmvein recognition including identification and verification.
Our goal in this paper is to show that this is confirmed for palmvein recognition, thus allowing to achieve very high recognition rates on a well-known benchmark data set.
arXiv Detail & Related papers (2020-07-13T11:34:46Z) - Latent Fingerprint Registration via Matching Densely Sampled Points [100.53031290339483]
Existing latent fingerprint registration approaches are mainly based on establishing correspondences between minutiae.
We propose a non-minutia latent fingerprint registration method which estimates the spatial transformation between a pair of fingerprints.
The proposed method achieves the state-of-the-art registration performance, especially under challenging conditions.
arXiv Detail & Related papers (2020-05-12T15:51:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.