Logic-based Explanations for Linear Support Vector Classifiers with Reject Option
- URL: http://arxiv.org/abs/2403.16190v1
- Date: Sun, 24 Mar 2024 15:14:44 GMT
- Title: Logic-based Explanations for Linear Support Vector Classifiers with Reject Option
- Authors: Francisco Mateus Rocha Filho, Thiago Alves Rocha, Reginaldo Pereira Fernandes Ribeiro, Ajalmar RĂªgo da Rocha Neto,
- Abstract summary: Support Vector (SVC) is a well-known Machine Learning (ML) model for linear classification problems.
We propose a logic-based approach with formal guarantees on the correctness and minimality of explanations for linear SVCs with reject option.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Support Vector Classifier (SVC) is a well-known Machine Learning (ML) model for linear classification problems. It can be used in conjunction with a reject option strategy to reject instances that are hard to correctly classify and delegate them to a specialist. This further increases the confidence of the model. Given this, obtaining an explanation of the cause of rejection is important to not blindly trust the obtained results. While most of the related work has developed means to give such explanations for machine learning models, to the best of our knowledge none have done so for when reject option is present. We propose a logic-based approach with formal guarantees on the correctness and minimality of explanations for linear SVCs with reject option. We evaluate our approach by comparing it to Anchors, which is a heuristic algorithm for generating explanations. Obtained results show that our proposed method gives shorter explanations with reduced time cost.
Related papers
- Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Selective Explanations [14.312717332216073]
A machine learning model is trained to predict feature attribution scores with only one inference.
Despite their efficiency, amortized explainers can produce inaccurate predictions and misleading explanations.
We propose selective explanations, a novel feature attribution method that detects when amortized explainers generate low-quality explanations.
arXiv Detail & Related papers (2024-05-29T23:08:31Z) - Bisimulation Learning [55.859538562698496]
We compute finite bisimulations of state transition systems with large, possibly infinite state space.
Our technique yields faster verification results than alternative state-of-the-art tools in practice.
arXiv Detail & Related papers (2024-05-24T17:11:27Z) - XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners [71.8257151788923]
We propose a novel Explainable Active Learning framework (XAL) for low-resource text classification.
XAL encourages classifiers to justify their inferences and delve into unlabeled data for which they cannot provide reasonable explanations.
Experiments on six datasets show that XAL achieves consistent improvement over 9 strong baselines.
arXiv Detail & Related papers (2023-10-09T08:07:04Z) - CLIMAX: An exploration of Classifier-Based Contrastive Explanations [5.381004207943597]
We propose a novel post-hoc model XAI technique that provides contrastive explanations justifying the classification of a black box.
Our method, which we refer to as CLIMAX, is based on local classifiers.
We show that we achieve better consistency as compared to baselines such as LIME, BayLIME, and SLIME.
arXiv Detail & Related papers (2023-07-02T22:52:58Z) - Understanding Post-hoc Explainers: The Case of Anchors [6.681943980068051]
We present a theoretical analysis of a rule-based interpretability method that highlights a small set of words to explain a text's decision.
After formalizing its algorithm and providing useful insights, we demonstrate mathematically that Anchors produces meaningful results.
arXiv Detail & Related papers (2023-03-15T17:56:34Z) - VCNet: A self-explaining model for realistic counterfactual generation [52.77024349608834]
Counterfactual explanation is a class of methods to make local explanations of machine learning decisions.
We present VCNet-Variational Counter Net, a model architecture that combines a predictor and a counterfactual generator.
We show that VCNet is able to both generate predictions, and to generate counterfactual explanations without having to solve another minimisation problem.
arXiv Detail & Related papers (2022-12-21T08:45:32Z) - On Computing Probabilistic Abductive Explanations [30.325691263226968]
The most widely studied explainable AI (XAI) approaches are unsound.
PI-explanations also exhibit important drawbacks, the most visible of which is arguably their size.
This paper investigates practical approaches for computing relevant sets for a number of widely used classifiers.
arXiv Detail & Related papers (2022-12-12T15:47:10Z) - Don't Explain Noise: Robust Counterfactuals for Randomized Ensembles [50.81061839052459]
We formalize the generation of robust counterfactual explanations as a probabilistic problem.
We show the link between the robustness of ensemble models and the robustness of base learners.
Our method achieves high robustness with only a small increase in the distance from counterfactual explanations to their initial observations.
arXiv Detail & Related papers (2022-05-27T17:28:54Z) - Explaining Reject Options of Learning Vector Quantization Classifiers [6.125017875330933]
We propose to use counterfactual explanations for explaining rejects in machine learning models.
We investigate how to efficiently compute counterfactual explanations of different reject options for an important class of models.
arXiv Detail & Related papers (2022-02-15T08:16:10Z) - Search Methods for Sufficient, Socially-Aligned Feature Importance
Explanations with In-Distribution Counterfactuals [72.00815192668193]
Feature importance (FI) estimates are a popular form of explanation, and they are commonly created and evaluated by computing the change in model confidence caused by removing certain input features at test time.
We study several under-explored dimensions of FI-based explanations, providing conceptual and empirical improvements for this form of explanation.
arXiv Detail & Related papers (2021-06-01T20:36:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.