Pose-Guided Self-Training with Two-Stage Clustering for Unsupervised Landmark Discovery
- URL: http://arxiv.org/abs/2403.16194v1
- Date: Sun, 24 Mar 2024 15:24:04 GMT
- Title: Pose-Guided Self-Training with Two-Stage Clustering for Unsupervised Landmark Discovery
- Authors: Siddharth Tourani, Ahmed Alwheibi, Arif Mahmood, Muhammad Haris Khan,
- Abstract summary: Unsupervised landmarks discovery (ULD) for an object category is a challenging computer vision problem.
In pursuit of developing a robust ULD framework, we explore the potential of a recent paradigm of self-supervised learning algorithms, known as diffusion models.
Our approach consistently outperforms state-of-the-art methods on four challenging benchmarks AFLW, MAFL, CatHeads and LS3D by significant margins.
- Score: 17.455841673719625
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised landmarks discovery (ULD) for an object category is a challenging computer vision problem. In pursuit of developing a robust ULD framework, we explore the potential of a recent paradigm of self-supervised learning algorithms, known as diffusion models. Some recent works have shown that these models implicitly contain important correspondence cues. Towards harnessing the potential of diffusion models for the ULD task, we make the following core contributions. First, we propose a ZeroShot ULD baseline based on simple clustering of random pixel locations with nearest neighbour matching. It delivers better results than existing ULD methods. Second, motivated by the ZeroShot performance, we develop a ULD algorithm based on diffusion features using self-training and clustering which also outperforms prior methods by notable margins. Third, we introduce a new proxy task based on generating latent pose codes and also propose a two-stage clustering mechanism to facilitate effective pseudo-labeling, resulting in a significant performance improvement. Overall, our approach consistently outperforms state-of-the-art methods on four challenging benchmarks AFLW, MAFL, CatHeads and LS3D by significant margins.
Related papers
- Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
Method for unsupervised meta-learning, CACTUs, is a clustering-based approach with pseudo-labeling.
This approach is model-agnostic and can be combined with supervised algorithms to learn from unlabeled data.
We prove that the core reason for this is lack of a clustering-friendly property in the embedding space.
arXiv Detail & Related papers (2022-09-27T19:04:36Z) - Unsupervised Learning on 3D Point Clouds by Clustering and Contrasting [11.64827192421785]
unsupervised representation learning is a promising direction to auto-extract features without human intervention.
This paper proposes a general unsupervised approach, named textbfConClu, to perform the learning of point-wise and global features.
arXiv Detail & Related papers (2022-02-05T12:54:17Z) - Deep Attention-guided Graph Clustering with Dual Self-supervision [49.040136530379094]
We propose a novel method, namely deep attention-guided graph clustering with dual self-supervision (DAGC)
We develop a dual self-supervision solution consisting of a soft self-supervision strategy with a triplet Kullback-Leibler divergence loss and a hard self-supervision strategy with a pseudo supervision loss.
Our method consistently outperforms state-of-the-art methods on six benchmark datasets.
arXiv Detail & Related papers (2021-11-10T06:53:03Z) - Light Field Saliency Detection with Dual Local Graph Learning
andReciprocative Guidance [148.9832328803202]
We model the infor-mation fusion within focal stack via graph networks.
We build a novel dual graph modelto guide the focal stack fusion process using all-focus pat-terns.
arXiv Detail & Related papers (2021-10-02T00:54:39Z) - Learning Robust Representation for Clustering through Locality
Preserving Variational Discriminative Network [16.259673823482665]
Variational Deep Embedding achieves great success in various clustering tasks.
VaDE suffers from two problems: 1) it is fragile to the input noise; 2) it ignores the locality information between the neighboring data points.
We propose a joint learning framework that improves VaDE with a robust embedding discriminator and a local structure constraint.
arXiv Detail & Related papers (2020-12-25T02:31:55Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z) - An unsupervised deep learning framework via integrated optimization of
representation learning and GMM-based modeling [31.334196673143257]
This paper introduces a new principle of joint learning on both deep representations and GMM-based deep modeling.
In comparison with the existing work in similar areas, our objective function has two learning targets, which are created to be jointly optimized.
The compactness of clusters is significantly enhanced by reducing the intra-cluster distances, and the separability is improved by increasing the inter-cluster distances.
arXiv Detail & Related papers (2020-09-11T04:57:03Z) - Learning to Cluster Faces via Confidence and Connectivity Estimation [136.5291151775236]
We propose a fully learnable clustering framework without requiring a large number of overlapped subgraphs.
Our method significantly improves clustering accuracy and thus performance of the recognition models trained on top, yet it is an order of magnitude more efficient than existing supervised methods.
arXiv Detail & Related papers (2020-04-01T13:39:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.