From Discrete to Continuous: Deep Fair Clustering With Transferable Representations
- URL: http://arxiv.org/abs/2403.16201v1
- Date: Sun, 24 Mar 2024 15:48:29 GMT
- Title: From Discrete to Continuous: Deep Fair Clustering With Transferable Representations
- Authors: Xiang Zhang,
- Abstract summary: We propose a flexible deep fair clustering method that can handle discrete and continuous sensitive attributes simultaneously.
Specifically, we design an information bottleneck style objective function to learn fair and clustering-friendly representations.
Unlike existing works, we impose fairness at the representation level, which could guarantee fairness for the transferred task.
- Score: 6.366934969620947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of deep fair clustering, which partitions data into clusters via the representations extracted by deep neural networks while hiding sensitive data attributes. To achieve fairness, existing methods present a variety of fairness-related objective functions based on the group fairness criterion. However, these works typically assume that the sensitive attributes are discrete and do not work for continuous sensitive variables, such as the proportion of the female population in an area. Besides, the potential of the representations learned from clustering tasks to improve performance on other tasks is ignored by existing works. In light of these limitations, we propose a flexible deep fair clustering method that can handle discrete and continuous sensitive attributes simultaneously. Specifically, we design an information bottleneck style objective function to learn fair and clustering-friendly representations. Furthermore, we explore for the first time the transferability of the extracted representations to other downstream tasks. Unlike existing works, we impose fairness at the representation level, which could guarantee fairness for the transferred task regardless of clustering results. To verify the effectiveness of the proposed method, we perform extensive experiments on datasets with discrete and continuous sensitive attributes, demonstrating the advantage of our method in comparison with state-of-the-art methods.
Related papers
- Leveraging sparse and shared feature activations for disentangled
representation learning [112.22699167017471]
We propose to leverage knowledge extracted from a diversified set of supervised tasks to learn a common disentangled representation.
We validate our approach on six real world distribution shift benchmarks, and different data modalities.
arXiv Detail & Related papers (2023-04-17T01:33:24Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Conditional Supervised Contrastive Learning for Fair Text Classification [59.813422435604025]
We study learning fair representations that satisfy a notion of fairness known as equalized odds for text classification via contrastive learning.
Specifically, we first theoretically analyze the connections between learning representations with a fairness constraint and conditional supervised contrastive objectives.
arXiv Detail & Related papers (2022-05-23T17:38:30Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
We present a method for neural network interpretability by combining feature attribution with counterfactual explanations.
We show that this method can be used to quantitatively evaluate the performance of feature attribution methods in an objective manner.
arXiv Detail & Related papers (2021-09-28T00:53:34Z) - Concurrent Discrimination and Alignment for Self-Supervised Feature
Learning [52.213140525321165]
Existing self-supervised learning methods learn by means of pretext tasks which are either (1) discriminating that explicitly specify which features should be separated or (2) aligning that precisely indicate which features should be closed together.
In this work, we combine the positive aspects of the discriminating and aligning methods, and design a hybrid method that addresses the above issue.
Our method explicitly specifies the repulsion and attraction mechanism respectively by discriminative predictive task and concurrently maximizing mutual information between paired views.
Our experiments on nine established benchmarks show that the proposed model consistently outperforms the existing state-of-the-art results of self-supervised and transfer
arXiv Detail & Related papers (2021-08-19T09:07:41Z) - Deep Clustering based Fair Outlier Detection [19.601280507914325]
We propose an instance-level weighted representation learning strategy to enhance the joint deep clustering and outlier detection.
Our DCFOD method consistently achieves superior performance on both the outlier detection validity and two types of fairness notions in outlier detection.
arXiv Detail & Related papers (2021-06-09T15:12:26Z) - Deep Fair Discriminative Clustering [24.237000220172906]
We study a general notion of group-level fairness for binary and multi-state protected status variables (PSVs)
We propose a refinement learning algorithm to combine the clustering goal with the fairness objective to learn fair clusters adaptively.
Our framework shows promising results for novel clustering tasks including flexible fairness constraints, multi-state PSVs and predictive clustering.
arXiv Detail & Related papers (2021-05-28T23:50:48Z) - Learning to Generate Fair Clusters from Demonstrations [27.423983748614198]
We show how to identify the intended fairness constraint for a problem based on limited demonstrations from an expert.
We present an algorithm to identify the fairness metric from demonstrations and generate clusters using existing off-the-shelf clustering techniques.
We investigate how to generate interpretable solutions using our approach.
arXiv Detail & Related papers (2021-02-08T03:09:33Z) - Unsupervised Domain Adaptation in Semantic Segmentation via Orthogonal
and Clustered Embeddings [25.137859989323537]
We propose an effective Unsupervised Domain Adaptation (UDA) strategy, based on a feature clustering method.
We introduce two novel learning objectives to enhance the discriminative clustering performance.
arXiv Detail & Related papers (2020-11-25T10:06:22Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.