Learning to Generate Fair Clusters from Demonstrations
- URL: http://arxiv.org/abs/2102.03977v1
- Date: Mon, 8 Feb 2021 03:09:33 GMT
- Title: Learning to Generate Fair Clusters from Demonstrations
- Authors: Sainyam Galhotra, Sandhya Saisubramanian and Shlomo Zilberstein
- Abstract summary: We show how to identify the intended fairness constraint for a problem based on limited demonstrations from an expert.
We present an algorithm to identify the fairness metric from demonstrations and generate clusters using existing off-the-shelf clustering techniques.
We investigate how to generate interpretable solutions using our approach.
- Score: 27.423983748614198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fair clustering is the process of grouping similar entities together, while
satisfying a mathematically well-defined fairness metric as a constraint. Due
to the practical challenges in precise model specification, the prescribed
fairness constraints are often incomplete and act as proxies to the intended
fairness requirement, leading to biased outcomes when the system is deployed.
We examine how to identify the intended fairness constraint for a problem based
on limited demonstrations from an expert. Each demonstration is a clustering
over a subset of the data.
We present an algorithm to identify the fairness metric from demonstrations
and generate clusters using existing off-the-shelf clustering techniques, and
analyze its theoretical properties. To extend our approach to novel fairness
metrics for which clustering algorithms do not currently exist, we present a
greedy method for clustering. Additionally, we investigate how to generate
interpretable solutions using our approach. Empirical evaluation on three
real-world datasets demonstrates the effectiveness of our approach in quickly
identifying the underlying fairness and interpretability constraints, which are
then used to generate fair and interpretable clusters.
Related papers
- Finite-Sample and Distribution-Free Fair Classification: Optimal Trade-off Between Excess Risk and Fairness, and the Cost of Group-Blindness [14.421493372559762]
We quantify the impact of enforcing algorithmic fairness and group-blindness in binary classification under group fairness constraints.
We propose a unified framework for fair classification that provides distribution-free and finite-sample fairness guarantees with controlled excess risk.
arXiv Detail & Related papers (2024-10-21T20:04:17Z) - GCC: Generative Calibration Clustering [55.44944397168619]
We propose a novel Generative Clustering (GCC) method to incorporate feature learning and augmentation into clustering procedure.
First, we develop a discrimirative feature alignment mechanism to discover intrinsic relationship across real and generated samples.
Second, we design a self-supervised metric learning to generate more reliable cluster assignment.
arXiv Detail & Related papers (2024-04-14T01:51:11Z) - From Discrete to Continuous: Deep Fair Clustering With Transferable Representations [6.366934969620947]
We propose a flexible deep fair clustering method that can handle discrete and continuous sensitive attributes simultaneously.
Specifically, we design an information bottleneck style objective function to learn fair and clustering-friendly representations.
Unlike existing works, we impose fairness at the representation level, which could guarantee fairness for the transferred task.
arXiv Detail & Related papers (2024-03-24T15:48:29Z) - Parametric Fairness with Statistical Guarantees [0.46040036610482665]
We extend the concept of Demographic Parity to incorporate distributional properties in predictions, allowing expert knowledge to be used in the fair solution.
We illustrate the use of this new metric through a practical example of wages, and develop a parametric method that efficiently addresses practical challenges.
arXiv Detail & Related papers (2023-10-31T14:52:39Z) - FFB: A Fair Fairness Benchmark for In-Processing Group Fairness Methods [84.1077756698332]
This paper introduces the Fair Fairness Benchmark (textsfFFB), a benchmarking framework for in-processing group fairness methods.
We provide a comprehensive analysis of state-of-the-art methods to ensure different notions of group fairness.
arXiv Detail & Related papers (2023-06-15T19:51:28Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
Method for unsupervised meta-learning, CACTUs, is a clustering-based approach with pseudo-labeling.
This approach is model-agnostic and can be combined with supervised algorithms to learn from unlabeled data.
We prove that the core reason for this is lack of a clustering-friendly property in the embedding space.
arXiv Detail & Related papers (2022-09-27T19:04:36Z) - Unsupervised Learning of Debiased Representations with Pseudo-Attributes [85.5691102676175]
We propose a simple but effective debiasing technique in an unsupervised manner.
We perform clustering on the feature embedding space and identify pseudoattributes by taking advantage of the clustering results.
We then employ a novel cluster-based reweighting scheme for learning debiased representation.
arXiv Detail & Related papers (2021-08-06T05:20:46Z) - Deep Clustering based Fair Outlier Detection [19.601280507914325]
We propose an instance-level weighted representation learning strategy to enhance the joint deep clustering and outlier detection.
Our DCFOD method consistently achieves superior performance on both the outlier detection validity and two types of fairness notions in outlier detection.
arXiv Detail & Related papers (2021-06-09T15:12:26Z) - Deep Fair Discriminative Clustering [24.237000220172906]
We study a general notion of group-level fairness for binary and multi-state protected status variables (PSVs)
We propose a refinement learning algorithm to combine the clustering goal with the fairness objective to learn fair clusters adaptively.
Our framework shows promising results for novel clustering tasks including flexible fairness constraints, multi-state PSVs and predictive clustering.
arXiv Detail & Related papers (2021-05-28T23:50:48Z) - Beyond Individual and Group Fairness [90.4666341812857]
We present a new data-driven model of fairness that is guided by the unfairness complaints received by the system.
Our model supports multiple fairness criteria and takes into account their potential incompatibilities.
arXiv Detail & Related papers (2020-08-21T14:14:44Z) - Fair Hierarchical Clustering [92.03780518164108]
We define a notion of fairness that mitigates over-representation in traditional clustering.
We show that our algorithms can find a fair hierarchical clustering, with only a negligible loss in the objective.
arXiv Detail & Related papers (2020-06-18T01:05:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.