Deep Fair Learning: A Unified Framework for Fine-tuning Representations with Sufficient Networks
- URL: http://arxiv.org/abs/2504.06470v1
- Date: Tue, 08 Apr 2025 22:24:22 GMT
- Title: Deep Fair Learning: A Unified Framework for Fine-tuning Representations with Sufficient Networks
- Authors: Enze Shi, Linglong Kong, Bei Jiang,
- Abstract summary: We propose a framework that integrates sufficient dimension reduction with deep learning to construct fair and informative representations.<n>By introducing a novel penalty term during fine-tuning, our method enforces conditional independence between sensitive attributes and learned representations.<n>Our approach achieves a superior balance between fairness and utility, significantly outperforming state-of-the-art baselines.
- Score: 8.616743904155419
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensuring fairness in machine learning is a critical and challenging task, as biased data representations often lead to unfair predictions. To address this, we propose Deep Fair Learning, a framework that integrates nonlinear sufficient dimension reduction with deep learning to construct fair and informative representations. By introducing a novel penalty term during fine-tuning, our method enforces conditional independence between sensitive attributes and learned representations, addressing bias at its source while preserving predictive performance. Unlike prior methods, it supports diverse sensitive attributes, including continuous, discrete, binary, or multi-group types. Experiments on various types of data structure show that our approach achieves a superior balance between fairness and utility, significantly outperforming state-of-the-art baselines.
Related papers
- An Attention-based Framework for Fair Contrastive Learning [2.1605931466490795]
We propose a new method for fair contrastive learning that employs an attention mechanism to model bias-causing interactions.
Our attention mechanism avoids bias-causing samples that confound the model and focuses on bias-reducing samples that help learn semantically meaningful representations.
arXiv Detail & Related papers (2024-11-22T07:11:35Z) - Model Debiasing via Gradient-based Explanation on Representation [14.673988027271388]
We propose a novel fairness framework that performs debiasing with regard to sensitive attributes and proxy attributes.
Our framework achieves better fairness-accuracy trade-off on unstructured and structured datasets than previous state-of-the-art approaches.
arXiv Detail & Related papers (2023-05-20T11:57:57Z) - Practical Approaches for Fair Learning with Multitype and Multivariate
Sensitive Attributes [70.6326967720747]
It is important to guarantee that machine learning algorithms deployed in the real world do not result in unfairness or unintended social consequences.
We introduce FairCOCCO, a fairness measure built on cross-covariance operators on reproducing kernel Hilbert Spaces.
We empirically demonstrate consistent improvements against state-of-the-art techniques in balancing predictive power and fairness on real-world datasets.
arXiv Detail & Related papers (2022-11-11T11:28:46Z) - Learning Fair Representation via Distributional Contrastive
Disentanglement [9.577369164287813]
Learning fair representation is crucial for achieving fairness or debiasing sensitive information.
We propose a new approach, learning FAir Representation via distributional CONtrastive Variational AutoEncoder (FarconVAE)
We show superior performance on fairness, pretrained model debiasing, and domain generalization tasks from various modalities.
arXiv Detail & Related papers (2022-06-17T12:58:58Z) - Conditional Supervised Contrastive Learning for Fair Text Classification [59.813422435604025]
We study learning fair representations that satisfy a notion of fairness known as equalized odds for text classification via contrastive learning.
Specifically, we first theoretically analyze the connections between learning representations with a fairness constraint and conditional supervised contrastive objectives.
arXiv Detail & Related papers (2022-05-23T17:38:30Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z) - Contrastive Learning for Fair Representations [50.95604482330149]
Trained classification models can unintentionally lead to biased representations and predictions.
Existing debiasing methods for classification models, such as adversarial training, are often expensive to train and difficult to optimise.
We propose a method for mitigating bias by incorporating contrastive learning, in which instances sharing the same class label are encouraged to have similar representations.
arXiv Detail & Related papers (2021-09-22T10:47:51Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z) - FairNN- Conjoint Learning of Fair Representations for Fair Decisions [40.05268461544044]
We propose FairNN a neural network that performs joint feature representation and classification for fairness-aware learning.
Our experiments on a variety of datasets demonstrate that such a joint approach is superior to separate treatment of unfairness in representation learning or supervised learning.
arXiv Detail & Related papers (2020-04-05T12:08:30Z) - Fairness by Learning Orthogonal Disentangled Representations [50.82638766862974]
We propose a novel disentanglement approach to invariant representation problem.
We enforce the meaningful representation to be agnostic to sensitive information by entropy.
The proposed approach is evaluated on five publicly available datasets.
arXiv Detail & Related papers (2020-03-12T11:09:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.