On machine learning analysis of atomic force microscopy images for image classification, sample surface recognition
- URL: http://arxiv.org/abs/2403.16230v1
- Date: Sun, 24 Mar 2024 16:48:10 GMT
- Title: On machine learning analysis of atomic force microscopy images for image classification, sample surface recognition
- Authors: Igor Sokolov,
- Abstract summary: Atomic force microscopy (AFM) imaging is one of the best matches with machine learning (ML) analysis among microscopy techniques.
The described approach has already been successfully used to analyze and classify the surfaces of biological cells.
It can be applied to recognize medical images, specific material processing, in forensic studies, even to identify the authenticity of arts.
- Score: 2.356908851188234
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Atomic force microscopy (AFM or SPM) imaging is one of the best matches with machine learning (ML) analysis among microscopy techniques. The digital format of AFM images allows for direct utilization in ML algorithms without the need for additional processing. Additionally, AFM enables the simultaneous imaging of distributions of over a dozen different physicochemical properties of sample surfaces, a process known as multidimensional imaging. While this wealth of information can be challenging to analyze using traditional methods, ML provides a seamless approach to this task. However, the relatively slow speed of AFM imaging poses a challenge in applying deep learning methods broadly used in image recognition. This Prospective is focused on ML recognition/classification when using a relatively small number of AFM images, small database. We discuss ML methods other than popular deep-learning neural networks. The described approach has already been successfully used to analyze and classify the surfaces of biological cells. It can be applied to recognize medical images, specific material processing, in forensic studies, even to identify the authenticity of arts. A general template for ML analysis specific to AFM is suggested, with a specific example of the identification of cell phenotype. Special attention is given to the analysis of the statistical significance of the obtained results, an important feature that is often overlooked in papers dealing with machine learning. A simple method for finding statistical significance is also described.
Related papers
- MedFLIP: Medical Vision-and-Language Self-supervised Fast Pre-Training with Masked Autoencoder [26.830574964308962]
We introduce MedFLIP, a Fast Language-Image Pre-training method for Medical analysis.
We explore MAEs for zero-shot learning with crossed domains, which enhances the model's ability to learn from limited data.
Lastly, we validate using language will improve the zero-shot performance for the medical image analysis.
arXiv Detail & Related papers (2024-03-07T16:11:43Z) - Capability enhancement of the X-ray micro-tomography system via
ML-assisted approaches [0.8999666725996978]
Ring artifacts in X-ray micro-CT images are one of the primary causes of concern in their accurate visual interpretation and quantitative analysis.
This article presents a convolution neural network (CNN)-based Deep Learning (DL) model inspired by UNet with a series of encoder and decoder units with skip connections for removal of ring artifacts.
arXiv Detail & Related papers (2024-02-08T14:23:24Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising.
We tested a method for generating microscopic histological images from MRI scans of the corpus callosum using conditional generative adversarial network (cGAN) architecture.
arXiv Detail & Related papers (2023-10-16T13:58:53Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
We propose a deep-learning framework to detect and classify areas of microscopic images with similar levels of gene expression.
The data we analyze requires an unsupervised learning model for which we employ a type of Artificial Neural Network - Deep Learning Autoencoders.
arXiv Detail & Related papers (2023-04-19T13:45:28Z) - Automatically Predict Material Properties with Microscopic Image Example
Polymer Compatibility [94.40113383292139]
Computer image recognition with machine learning method can make up the defects of artificial judging.
We achieve automatic miscibility recognition utilizing convolution neural network and transfer learning method.
The proposed method can be widely applied to the quantitative characterization of the microstructure and properties of various materials.
arXiv Detail & Related papers (2023-03-22T07:51:32Z) - Learning multi-scale functional representations of proteins from
single-cell microscopy data [77.34726150561087]
We show that simple convolutional networks trained on localization classification can learn protein representations that encapsulate diverse functional information.
We also propose a robust evaluation strategy to assess quality of protein representations across different scales of biological function.
arXiv Detail & Related papers (2022-05-24T00:00:07Z) - Unsupervised Anomaly Detection in MR Images using Multi-Contrast
Information [3.7273619690170796]
Anomaly detection in medical imaging is to distinguish the relevant biomarkers of diseases from those of normal tissues.
Deep supervised learning methods have shown potentials in various detection tasks, but its performances would be limited in medical imaging fields.
In this paper, we developed an unsupervised learning framework for pixel-wise anomaly detection in multi-contrast MRI.
arXiv Detail & Related papers (2021-05-02T13:05:36Z) - Machine Learning Methods for Histopathological Image Analysis: A Review [62.14548392474976]
Histopathological images (HIs) are the gold standard for evaluating some types of tumors for cancer diagnosis.
One of the ways of accelerating such an analysis is to use computer-aided diagnosis (CAD) systems.
arXiv Detail & Related papers (2021-02-07T19:12:32Z) - A Multi-stream Convolutional Neural Network for Micro-expression
Recognition Using Optical Flow and EVM [7.511596258731931]
Micro-expression (ME) recognition plays a crucial role in a wide range of applications, particularly in public security and psychotherapy.
Recently, traditional methods rely excessively on machine learning design and the recognition rate is not high enough for its practical application.
We design a multi-stream convolutional neural network (MSCNN) for ME recognition in this paper.
arXiv Detail & Related papers (2020-11-07T11:28:53Z) - Machine learning for faster and smarter fluorescence lifetime imaging
microscopy [16.519888238537003]
Fluorescence lifetime imaging microscopy (FLIM) is a powerful technique in biomedical research.
At present, the calculation, analysis, and interpretation of FLIM is a complex, slow, and computationally expensive process.
Machine learning (ML) techniques are well suited to extract and interpret measurements from multi-dimensional FLIM data sets.
arXiv Detail & Related papers (2020-08-05T18:59:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.