論文の概要: Large Language Models Offer an Alternative to the Traditional Approach of Topic Modelling
- arxiv url: http://arxiv.org/abs/2403.16248v2
- Date: Tue, 26 Mar 2024 17:46:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 21:05:08.915179
- Title: Large Language Models Offer an Alternative to the Traditional Approach of Topic Modelling
- Title(参考訳): 大規模言語モデルはトピックモデリングの伝統的なアプローチに代わるものを提供する
- Authors: Yida Mu, Chun Dong, Kalina Bontcheva, Xingyi Song,
- Abstract要約: 広範テキストコーパス内の話題を明らかにする代替手段として,大規模言語モデル (LLM) の未解決の可能性について検討する。
本研究は, 適切なプロンプトを持つLCMが, トピックのタイトルを生成でき, トピックを洗練, マージするためのガイドラインに固執する上で, 有効な代替手段として目立たせることを示唆している。
- 参考スコア(独自算出の注目度): 0.9095496510579351
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Topic modelling, as a well-established unsupervised technique, has found extensive use in automatically detecting significant topics within a corpus of documents. However, classic topic modelling approaches (e.g., LDA) have certain drawbacks, such as the lack of semantic understanding and the presence of overlapping topics. In this work, we investigate the untapped potential of large language models (LLMs) as an alternative for uncovering the underlying topics within extensive text corpora. To this end, we introduce a framework that prompts LLMs to generate topics from a given set of documents and establish evaluation protocols to assess the clustering efficacy of LLMs. Our findings indicate that LLMs with appropriate prompts can stand out as a viable alternative, capable of generating relevant topic titles and adhering to human guidelines to refine and merge topics. Through in-depth experiments and evaluation, we summarise the advantages and constraints of employing LLMs in topic extraction.
- Abstract(参考訳): トピックモデリングは、よく確立された教師なしの技術であり、文書のコーパス内の重要なトピックを自動的に検出するのに広く利用されている。
しかし、古典的なトピックモデリングアプローチ(例えばLDA)には、意味的理解の欠如や重複するトピックの存在など、何らかの欠点がある。
本研究では,大言語モデル (LLM) の未解決の可能性について検討する。
そこで本稿では, LLM に与えられた文書集合からトピックを生成するよう促すフレームワークを導入し, LLM のクラスタリングの有効性を評価するための評価プロトコルを確立する。
本研究は, 適切なプロンプトを持つLCMが, トピックのタイトルを生成でき, トピックを洗練, マージするためのガイドラインに固執する上で, 有効な代替手段として目立たせることを示唆している。
詳細な実験と評価を通じて,トピック抽出にLLMを用いることの利点と制約を要約する。
関連論文リスト
- Interactive Topic Models with Optimal Transport [75.26555710661908]
ラベル名監視型トピックモデリングのためのアプローチとして,EdTMを提案する。
EdTMは、LM/LLMベースのドキュメントトピック親和性を活用しながら、代入問題としてのトピックモデリングをモデル化する。
論文 参考訳(メタデータ) (2024-06-28T13:57:27Z) - Comprehensive Evaluation of Large Language Models for Topic Modeling [18.317976368281716]
トピックモデリングのための大規模言語モデル(LLM)を定量的に評価する。
LLMは幻覚の少ないコヒーレントで多様なトピックを識別できるが、文書の一部だけに着目してショートカットを行う可能性がある。
論文 参考訳(メタデータ) (2024-06-02T10:25:02Z) - Addressing Topic Granularity and Hallucination in Large Language Models for Topic Modelling [1.0345450222523374]
強力なゼロショットトピック抽出機能を備えた大規模言語モデル(LLM)は確率論的トピックモデリングに代わるものだ。
本稿では,LLMに基づくトピックモデリングにおけるトピックの粒度と幻覚の問題に対処することに焦点を当てる。
提案手法は, 従来の人間のアノテーションに頼らず, 生トピックの修正に再構築パイプラインを用いる。
論文 参考訳(メタデータ) (2024-05-01T16:32:07Z) - Leveraging Large Language Models for NLG Evaluation: Advances and Challenges [57.88520765782177]
大規模言語モデル(LLM)は、コヒーレンス、クリエイティビティ、コンテキスト関連など、生成されたコンテンツ品質を評価するための新たな道を開いた。
既存のLCMに基づく評価指標を整理し、これらの手法を理解し比較するための構造化された枠組みを提供する。
本稿では, 偏見, 堅牢性, ドメイン固有性, 統一評価などの未解決課題を議論することによって, 研究者に洞察を提供し, より公平で高度なNLG評価手法を提唱することを目的とする。
論文 参考訳(メタデータ) (2024-01-13T15:59:09Z) - Exploring the Potential of Large Language Models in Computational Argumentation [54.85665903448207]
大規模言語モデル (LLM) は、文脈を理解し、自然言語を生成するという印象的な能力を実証している。
この研究は、ChatGPT、Flanモデル、LLaMA2モデルなどのLLMをゼロショットと少数ショットの両方で評価することを目的としている。
論文 参考訳(メタデータ) (2023-11-15T15:12:15Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z) - Knowledge-Aware Bayesian Deep Topic Model [50.58975785318575]
本稿では,事前知識を階層型トピックモデリングに組み込むベイズ生成モデルを提案する。
提案モデルでは,事前知識を効率的に統合し,階層的なトピック発見と文書表現の両面を改善する。
論文 参考訳(メタデータ) (2022-09-20T09:16:05Z) - Topic Discovery via Latent Space Clustering of Pretrained Language Model
Representations [35.74225306947918]
本研究では, PLM 埋め込みを基盤とした空間学習とクラスタリングの連携フレームワークを提案する。
提案モデルでは,トピック発見のためにPLMがもたらす強力な表現力と言語的特徴を効果的に活用する。
論文 参考訳(メタデータ) (2022-02-09T17:26:08Z) - Keyword Assisted Embedded Topic Model [1.9000421840914223]
確率論的トピックモデルは、文書内の単語がトピックと呼ばれる潜在分布の集合を通してどのように生成されるかを記述する。
近年,組込みトピックモデル (ETM) がLDAを拡張して,単語埋め込みにおける意味情報を利用して意味的にリッチなトピックを導出している。
本稿では,ユーザ知識を情報的トピックレベルの先行情報に組み込む機能を備えたKeyETM(Keyword Assisted Embedded Topic Model)を提案する。
論文 参考訳(メタデータ) (2021-11-22T07:27:17Z) - Author Clustering and Topic Estimation for Short Texts [69.54017251622211]
同じ文書中の単語間の強い依存をモデル化することにより、遅延ディリクレ割当を拡張できる新しいモデルを提案する。
同時にユーザをクラスタ化し、ホック後のクラスタ推定の必要性を排除しています。
我々の手法は、短文で生じる問題に対する従来のアプローチよりも、-または----------- で機能する。
論文 参考訳(メタデータ) (2021-06-15T20:55:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。