論文の概要: Out-of-Distribution Detection via Deep Multi-Comprehension Ensemble
- arxiv url: http://arxiv.org/abs/2403.16260v2
- Date: Thu, 15 Aug 2024 21:30:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 20:24:02.550994
- Title: Out-of-Distribution Detection via Deep Multi-Comprehension Ensemble
- Title(参考訳): ディープ・マルチ・コングリジョン・アンサンブルによる分布外検出
- Authors: Chenhui Xu, Fuxun Yu, Zirui Xu, Nathan Inkawhich, Xiang Chen,
- Abstract要約: マルチComprehension (MC) Ensemble は,OOD (Out-of-Distribution) 特徴表現を拡大するための戦略として提案されている。
OOD検出におけるMC Ensemble戦略の優れた性能を示す実験結果を得た。
これにより,提案手法がトレーニング分布外のインスタンスを検出できるモデルの性能向上に有効であることを示す。
- 参考スコア(独自算出の注目度): 11.542472900306745
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research underscores the pivotal role of the Out-of-Distribution (OOD) feature representation field scale in determining the efficacy of models in OOD detection. Consequently, the adoption of model ensembles has emerged as a prominent strategy to augment this feature representation field, capitalizing on anticipated model diversity. However, our introduction of novel qualitative and quantitative model ensemble evaluation methods, specifically Loss Basin/Barrier Visualization and the Self-Coupling Index, reveals a critical drawback in existing ensemble methods. We find that these methods incorporate weights that are affine-transformable, exhibiting limited variability and thus failing to achieve the desired diversity in feature representation. To address this limitation, we elevate the dimensions of traditional model ensembles, incorporating various factors such as different weight initializations, data holdout, etc., into distinct supervision tasks. This innovative approach, termed Multi-Comprehension (MC) Ensemble, leverages diverse training tasks to generate distinct comprehensions of the data and labels, thereby extending the feature representation field. Our experimental results demonstrate the superior performance of the MC Ensemble strategy in OOD detection compared to both the naive Deep Ensemble method and a standalone model of comparable size. This underscores the effectiveness of our proposed approach in enhancing the model's capability to detect instances outside its training distribution.
- Abstract(参考訳): 近年の研究では、OOD検出におけるモデルの有効性を決定する上で、OOD(Out-of-Distribution)特徴表現の尺度が重要な役割を担っていることが述べられている。
その結果、モデルアンサンブルの採用は、予想されるモデルの多様性を生かして、この特徴表現を拡大するための顕著な戦略として現れてきた。
しかし,新たな定性的,定量的なモデルアンサンブル評価手法,特にロス盆地・バリア可視化と自己結合指数の導入は,既存のアンサンブル手法に重大な欠点を生じさせる。
これらの手法にはアフィン変換可能な重みが組み込まれており、可変性に限界があり、特徴表現における所望の多様性を達成できないことが判明した。
この制限に対処するため、従来のモデルアンサンブルの寸法を拡大し、異なるウェイト初期化、データホールドアウトなどの様々な要因を異なる監視タスクに組み込む。
この革新的なアプローチは、MC(Multi-Comprehension) Ensembleと呼ばれ、多様なトレーニングタスクを活用して、データとラベルの異なる理解を生成し、特徴表現場を拡張する。
実験の結果,OOD検出におけるMC Ensemble法は,本手法と同等の大きさのスタンドアロンモデルの両方と比較して優れた性能を示した。
これにより,提案手法がトレーニング分布外のインスタンスを検出できるモデルの性能向上に有効であることを示す。
関連論文リスト
- Self-Supervised Representation Learning with Meta Comprehensive
Regularization [11.387994024747842]
既存の自己管理フレームワークに組み込まれたCompMod with Meta Comprehensive Regularization (MCR)というモジュールを導入する。
提案したモデルを双方向最適化機構により更新し,包括的特徴を捉える。
本稿では,情報理論と因果対実的視点から提案手法の理論的支援を行う。
論文 参考訳(メタデータ) (2024-03-03T15:53:48Z) - Revealing Multimodal Contrastive Representation Learning through Latent
Partial Causal Models [85.67870425656368]
マルチモーダルデータに特化して設計された統一因果モデルを提案する。
マルチモーダル・コントラスト表現学習は潜在結合変数の同定に優れていることを示す。
実験では、仮定が破られたとしても、我々の発見の堅牢性を示す。
論文 参考訳(メタデータ) (2024-02-09T07:18:06Z) - Leveraging Diffusion Disentangled Representations to Mitigate Shortcuts
in Underspecified Visual Tasks [92.32670915472099]
拡散確率モデル(DPM)を用いた合成カウンターファクトの生成を利用したアンサンブルの多様化フレームワークを提案する。
拡散誘導型分散化は,データ収集を必要とする従来の手法に匹敵するアンサンブル多様性を達成し,ショートカットからの注意を回避できることを示す。
論文 参考訳(メタデータ) (2023-10-03T17:37:52Z) - Ensemble Modeling for Multimodal Visual Action Recognition [50.38638300332429]
マルチモーダル動作認識のためのアンサンブルモデリング手法を提案する。
我々は,MECCANO[21]データセットの長期分布を処理するために,焦点損失の変種を用いて,個別のモダリティモデルを個別に訓練する。
論文 参考訳(メタデータ) (2023-08-10T08:43:20Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Model-Agnostic Few-Shot Open-Set Recognition [36.97433312193586]
我々はFew-Shot Open-Set Recognition (FSOSR) 問題に取り組む。
既存のモデルにプラグイン可能なモデルに依存しない推論手法の開発に注力する。
オープン・セット・トランスダクティブ・インフォメーション・最大化手法OSTIMを提案する。
論文 参考訳(メタデータ) (2022-06-18T16:27:59Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
数発のセグメンテーションのための確率的潜在変数フレームワークである注意型プロトタイプ推論(API)を提案する。
我々は各オブジェクトカテゴリのプロトタイプを表現するためにグローバル潜在変数を定義し、確率分布としてモデル化する。
我々は4つのベンチマークで広範な実験を行い、提案手法は最先端のプロトタイプベースの手法よりも、少なくとも競争力があり、しばしば優れた性能が得られる。
論文 参考訳(メタデータ) (2021-05-14T06:58:44Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。