Coupled Requirements-driven Testing of CPS: From Simulation To Reality
- URL: http://arxiv.org/abs/2403.16287v2
- Date: Sun, 21 Apr 2024 17:52:34 GMT
- Title: Coupled Requirements-driven Testing of CPS: From Simulation To Reality
- Authors: Ankit Agrawal, Philipp Zech, Michael Vierhauser,
- Abstract summary: Failures in safety-critical Cyber-Physical Systems (CPS) can lead to severe incidents impacting physical infrastructure or even harming humans.
Current simulation and field testing practices, particularly in the domain of small Unmanned Aerial Systems (sUAS), are ad-hoc and lack a thorough, structured testing process.
We have developed an initial framework for validating CPS, specifically focusing on sUAS and robotic applications.
- Score: 5.7736484832934325
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Failures in safety-critical Cyber-Physical Systems (CPS), both software and hardware-related, can lead to severe incidents impacting physical infrastructure or even harming humans. As a result, extensive simulations and field tests need to be conducted, as part of the verification and validation of system requirements, to ensure system safety. However, current simulation and field testing practices, particularly in the domain of small Unmanned Aerial Systems (sUAS), are ad-hoc and lack a thorough, structured testing process. Furthermore, there is a dearth of standard processes and methodologies to inform the design of comprehensive simulation and field tests. This gap in the testing process leads to the deployment of sUAS applications that are: (a) tested in simulation environments which do not adequately capture the real-world complexity, such as environmental factors, due to a lack of tool support; (b) not subjected to a comprehensive range of scenarios during simulation testing to validate the system requirements, due to the absence of a process defining the relationship between requirements and simulation tests; and (c) not analyzed through standard safety analysis processes, because of missing traceability between simulation testing artifacts and safety analysis artifacts. To address these issues, we have developed an initial framework for validating CPS, specifically focusing on sUAS and robotic applications. We demonstrate the suitability of our framework by applying it to an example from the sUAS domain. Our preliminary results confirm the applicability of our framework. We conclude with a research roadmap to outline our next research goals along with our current proposal.
Related papers
- Automatically Adaptive Conformal Risk Control [49.95190019041905]
We propose a methodology for achieving approximate conditional control of statistical risks by adapting to the difficulty of test samples.
Our framework goes beyond traditional conditional risk control based on user-provided conditioning events to the algorithmic, data-driven determination of appropriate function classes for conditioning.
arXiv Detail & Related papers (2024-06-25T08:29:32Z) - A Requirements-Driven Platform for Validating Field Operations of Small
Uncrewed Aerial Vehicles [48.67061953896227]
DroneReqValidator (DRV) allows sUAS developers to define the operating context, configure multi-sUAS mission requirements, specify safety properties, and deploy their own custom sUAS applications in a high-fidelity 3D environment.
The DRV Monitoring system collects runtime data from sUAS and the environment, analyzes compliance with safety properties, and captures violations.
arXiv Detail & Related papers (2023-07-01T02:03:49Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Synthetic Data-Based Simulators for Recommender Systems: A Survey [55.60116686945561]
This survey aims at providing a comprehensive overview of the recent trends in the field of modeling and simulation.
We start with the motivation behind the development of frameworks implementing the simulations -- simulators.
We provide a new consistent classification of existing simulators based on their functionality, approbation, and industrial effectiveness.
arXiv Detail & Related papers (2022-06-22T19:33:21Z) - Data Driven Testing of Cyber Physical Systems [12.93632948681342]
We propose an approach to automatically generate fault-revealing test cases for CPS.
Data collected from an application managing a smart building have been used to learn models of the environment.
arXiv Detail & Related papers (2021-02-23T04:55:10Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
This paper proposes a set of benchmarks and a framework for the study of various algorithms aimed to transfer models and policies learnt in simulation to the real world.
We conduct experiments on a wide range of well known simulated environments to characterize and offer insights into the performance of different algorithms.
Our analysis can be useful for practitioners working in this area and can help make informed choices about the behavior and main properties of sim-to-real algorithms.
arXiv Detail & Related papers (2020-11-17T22:24:26Z) - Evaluating the Safety of Deep Reinforcement Learning Models using
Semi-Formal Verification [81.32981236437395]
We present a semi-formal verification approach for decision-making tasks based on interval analysis.
Our method obtains comparable results over standard benchmarks with respect to formal verifiers.
Our approach allows to efficiently evaluate safety properties for decision-making models in practical applications.
arXiv Detail & Related papers (2020-10-19T11:18:06Z) - Predictive Capability Maturity Quantification using Bayesian Network [0.0]
In nuclear engineering, modeling and simulations (M&Ss) are widely applied to support risk-informed safety analysis.
Due to data gaps, validation becomes a decision-making process under uncertainties.
This paper suggests a framework "Predictive Capability Maturity Quantification using Bayesian network (PCMQBN)" as a quantified framework for assessing simulation adequacy.
arXiv Detail & Related papers (2020-08-31T17:09:09Z) - A Survey of Algorithms for Black-Box Safety Validation of Cyber-Physical
Systems [30.638615396429536]
Motivated by the prevalence of safety-critical artificial intelligence, this work provides a survey of state-of-the-art safety validation techniques for CPS.
We present and discuss algorithms in the domains of optimization, path planning, reinforcement learning, and importance sampling.
A brief overview of safety-critical applications is given, including autonomous vehicles and aircraft collision avoidance systems.
arXiv Detail & Related papers (2020-05-06T17:31:51Z) - Efficient statistical validation with edge cases to evaluate Highly
Automated Vehicles [6.198523595657983]
The widescale deployment of Autonomous Vehicles seems to be imminent despite many safety challenges that are yet to be resolved.
Existing standards focus on deterministic processes where the validation requires only a set of test cases that cover the requirements.
This paper presents a new approach to compute the statistical characteristics of a system's behaviour by biasing automatically generated test cases towards the worst case scenarios.
arXiv Detail & Related papers (2020-03-04T04:35:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.