LLM-Agents Driven Automated Simulation Testing and Analysis of small Uncrewed Aerial Systems
- URL: http://arxiv.org/abs/2501.11864v1
- Date: Tue, 21 Jan 2025 03:42:21 GMT
- Title: LLM-Agents Driven Automated Simulation Testing and Analysis of small Uncrewed Aerial Systems
- Authors: Venkata Sai Aswath Duvvuru, Bohan Zhang, Michael Vierhauser, Ankit Agrawal,
- Abstract summary: Thorough simulation testing is crucial for validating the correct behavior of small Uncrewed Aerial Systems.
Various sUAS simulation tools exist to support developers, but the entire process of creating, executing, and analyzing simulation tests remains a largely manual and cumbersome task.
We propose AutoSimTest, a framework where multiple LLM agents collaborate to support the sUAS simulation testing process.
- Score: 11.183147511573717
- License:
- Abstract: Thorough simulation testing is crucial for validating the correct behavior of small Uncrewed Aerial Systems (sUAS) across multiple scenarios, including adverse weather conditions (such as wind, and fog), diverse settings (hilly terrain, or urban areas), and varying mission profiles (surveillance, tracking). While various sUAS simulation tools exist to support developers, the entire process of creating, executing, and analyzing simulation tests remains a largely manual and cumbersome task. Developers must identify test scenarios, set up the simulation environment, integrate the System under Test (SuT) with simulation tools, formulate mission plans, and collect and analyze results. These labor-intensive tasks limit the ability of developers to conduct exhaustive testing across a wide range of scenarios. To alleviate this problem, in this paper, we propose AutoSimTest, a Large Language Model (LLM)-driven framework, where multiple LLM agents collaborate to support the sUAS simulation testing process. This includes: (1) creating test scenarios that subject the SuT to unique environmental contexts; (2) preparing the simulation environment as per the test scenario; (3) generating diverse sUAS missions for the SuT to execute; and (4) analyzing simulation results and providing an interactive analytics interface. Further, the design of the framework is flexible for creating and testing scenarios for a variety of sUAS use cases, simulation tools, and SuT input requirements. We evaluated our approach by (a) conducting simulation testing of PX4 and ArduPilot flight-controller-based SuTs, (b) analyzing the performance of each agent, and (c) gathering feedback from sUAS developers. Our findings indicate that AutoSimTest significantly improves the efficiency and scope of the sUAS testing process, allowing for more comprehensive and varied scenario evaluations while reducing the manual effort.
Related papers
- Toward Automated Simulation Research Workflow through LLM Prompt Engineering Design [5.03859766090879]
This study explores the feasibility of constructing an autonomous simulation agent (ASA) powered by Large Language Models (LLMs)
Using a well-studied simulation problem of polymer chain conformations as a test case, we assessed the long-task completion and reliability of ASAs powered by different LLMs.
Our findings revealed that ASA-GPT-4o achieved near-flawless execution on designated research missions.
arXiv Detail & Related papers (2024-08-28T03:48:05Z) - Correlation of Software-in-the-Loop Simulation with Physical Testing for Autonomous Driving [0.0]
This paper presents a case study on the validation of an in-house developed SIL simulation toolchain.
To align the test track runs with the SIL simulations, a synchronization approach is proposed.
Preliminary results are presented to demonstrate the effectiveness of the proposed validation process.
arXiv Detail & Related papers (2024-06-05T08:11:10Z) - Coupled Requirements-driven Testing of CPS: From Simulation To Reality [5.7736484832934325]
Failures in safety-critical Cyber-Physical Systems (CPS) can lead to severe incidents impacting physical infrastructure or even harming humans.
Current simulation and field testing practices, particularly in the domain of small Unmanned Aerial Systems (sUAS), are ad-hoc and lack a thorough, structured testing process.
We have developed an initial framework for validating CPS, specifically focusing on sUAS and robotic applications.
arXiv Detail & Related papers (2024-03-24T20:32:12Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - A Requirements-Driven Platform for Validating Field Operations of Small
Uncrewed Aerial Vehicles [48.67061953896227]
DroneReqValidator (DRV) allows sUAS developers to define the operating context, configure multi-sUAS mission requirements, specify safety properties, and deploy their own custom sUAS applications in a high-fidelity 3D environment.
The DRV Monitoring system collects runtime data from sUAS and the environment, analyzes compliance with safety properties, and captures violations.
arXiv Detail & Related papers (2023-07-01T02:03:49Z) - Near-optimal Policy Identification in Active Reinforcement Learning [84.27592560211909]
AE-LSVI is a novel variant of the kernelized least-squares value RL (LSVI) algorithm that combines optimism with pessimism for active exploration.
We show that AE-LSVI outperforms other algorithms in a variety of environments when robustness to the initial state is required.
arXiv Detail & Related papers (2022-12-19T14:46:57Z) - Synthetic Data-Based Simulators for Recommender Systems: A Survey [55.60116686945561]
This survey aims at providing a comprehensive overview of the recent trends in the field of modeling and simulation.
We start with the motivation behind the development of frameworks implementing the simulations -- simulators.
We provide a new consistent classification of existing simulators based on their functionality, approbation, and industrial effectiveness.
arXiv Detail & Related papers (2022-06-22T19:33:21Z) - Metaphorical User Simulators for Evaluating Task-oriented Dialogue
Systems [80.77917437785773]
Task-oriented dialogue systems ( TDSs) are assessed mainly in an offline setting or through human evaluation.
We propose a metaphorical user simulator for end-to-end TDS evaluation, where we define a simulator to be metaphorical if it simulates user's analogical thinking in interactions with systems.
We also propose a tester-based evaluation framework to generate variants, i.e., dialogue systems with different capabilities.
arXiv Detail & Related papers (2022-04-02T05:11:03Z) - Digital Twins Are Not Monozygotic -- Cross-Replicating ADAS Testing in
Two Industry-Grade Automotive Simulators [13.386879259549305]
We show that SBST can be used to effectively and efficiently generate critical test scenarios in two simulators.
We find that executing the same test scenarios in the two simulators leads to notable differences in the details of the test outputs.
arXiv Detail & Related papers (2020-12-12T14:00:33Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
This paper proposes a set of benchmarks and a framework for the study of various algorithms aimed to transfer models and policies learnt in simulation to the real world.
We conduct experiments on a wide range of well known simulated environments to characterize and offer insights into the performance of different algorithms.
Our analysis can be useful for practitioners working in this area and can help make informed choices about the behavior and main properties of sim-to-real algorithms.
arXiv Detail & Related papers (2020-11-17T22:24:26Z) - Formal Scenario-Based Testing of Autonomous Vehicles: From Simulation to
the Real World [8.498542964344987]
We present a new approach to automated scenario-based testing of the safety of autonomous vehicles.
Our approach is based on formal methods, combining formal specification of scenarios and safety properties.
arXiv Detail & Related papers (2020-03-17T14:17:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.