Is There a One-Model-Fits-All Approach to Information Extraction? Revisiting Task Definition Biases
- URL: http://arxiv.org/abs/2403.16396v1
- Date: Mon, 25 Mar 2024 03:19:20 GMT
- Title: Is There a One-Model-Fits-All Approach to Information Extraction? Revisiting Task Definition Biases
- Authors: Wenhao Huang, Qianyu He, Zhixu Li, Jiaqing Liang, Yanghua Xiao,
- Abstract summary: Definition bias is a negative phenomenon that can mislead models.
We identify two types of definition bias in IE: bias among information extraction datasets and bias between information extraction datasets and instruction tuning datasets.
We propose a multi-stage framework consisting of definition bias measurement, bias-aware fine-tuning, and task-specific bias mitigation.
- Score: 62.806300074459116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Definition bias is a negative phenomenon that can mislead models. Definition bias in information extraction appears not only across datasets from different domains but also within datasets sharing the same domain. We identify two types of definition bias in IE: bias among information extraction datasets and bias between information extraction datasets and instruction tuning datasets. To systematically investigate definition bias, we conduct three probing experiments to quantitatively analyze it and discover the limitations of unified information extraction and large language models in solving definition bias. To mitigate definition bias in information extraction, we propose a multi-stage framework consisting of definition bias measurement, bias-aware fine-tuning, and task-specific bias mitigation. Experimental results demonstrate the effectiveness of our framework in addressing definition bias. Resources of this paper can be found at https://github.com/EZ-hwh/definition-bias
Related papers
- Looking at Model Debiasing through the Lens of Anomaly Detection [11.113718994341733]
Deep neural networks are sensitive to bias in the data.
We propose a new bias identification method based on anomaly detection.
We reach state-of-the-art performance on synthetic and real benchmark datasets.
arXiv Detail & Related papers (2024-07-24T17:30:21Z) - Revisiting the Dataset Bias Problem from a Statistical Perspective [72.94990819287551]
We study the "dataset bias" problem from a statistical standpoint.
We identify the main cause of the problem as the strong correlation between a class attribute u and a non-class attribute b.
We propose to mitigate dataset bias via either weighting the objective of each sample n by frac1p(u_n|b_n) or sampling that sample with a weight proportional to frac1p(u_n|b_n).
arXiv Detail & Related papers (2024-02-05T22:58:06Z) - Improving Bias Mitigation through Bias Experts in Natural Language
Understanding [10.363406065066538]
We propose a new debiasing framework that introduces binary classifiers between the auxiliary model and the main model.
Our proposed strategy improves the bias identification ability of the auxiliary model.
arXiv Detail & Related papers (2023-12-06T16:15:00Z) - Feature-Level Debiased Natural Language Understanding [86.8751772146264]
Existing natural language understanding (NLU) models often rely on dataset biases to achieve high performance on specific datasets.
We propose debiasing contrastive learning (DCT) to mitigate biased latent features and neglect the dynamic nature of bias.
DCT outperforms state-of-the-art baselines on out-of-distribution datasets while maintaining in-distribution performance.
arXiv Detail & Related papers (2022-12-11T06:16:14Z) - Discover and Mitigate Unknown Biases with Debiasing Alternate Networks [42.89260385194433]
We propose Debiasing Alternate Networks (DebiAN), which comprises two networks -- a Discoverer and a classifier.
DebiAN aims at unlearning the biases identified by the discoverer.
While previous works evaluate debiasing results in terms of a single bias, we create Multi-Color MNIST dataset to better benchmark mitigation of multiple biases.
arXiv Detail & Related papers (2022-07-20T17:59:51Z) - Unsupervised Learning of Unbiased Visual Representations [10.871587311621974]
Deep neural networks are known for their inability to learn robust representations when biases exist in the dataset.
We propose a fully unsupervised debiasing framework, consisting of three steps.
We employ state-of-the-art supervised debiasing techniques to obtain an unbiased model.
arXiv Detail & Related papers (2022-04-26T10:51:50Z) - Intrinsic Bias Identification on Medical Image Datasets [9.054785751150547]
We first define the data intrinsic bias attribute, and then propose a novel bias identification framework for medical image datasets.
The framework contains two major components, KlotskiNet and Bias Discriminant Direction Analysis(bdda), where KlostkiNet is to build the mapping which makes backgrounds to distinguish positive and negative samples.
Experimental results on three datasets show the effectiveness of the bias attributes discovered by the framework.
arXiv Detail & Related papers (2022-03-24T06:28:07Z) - Pseudo Bias-Balanced Learning for Debiased Chest X-ray Classification [57.53567756716656]
We study the problem of developing debiased chest X-ray diagnosis models without knowing exactly the bias labels.
We propose a novel algorithm, pseudo bias-balanced learning, which first captures and predicts per-sample bias labels.
Our proposed method achieved consistent improvements over other state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-18T11:02:18Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
We propose a cross-sample adversarial debiasing (CSAD) method to remove the bias information misused by the target task.
The correlation measurement plays a critical role in adversarial debiasing and is conducted by a cross-sample neural mutual information estimator.
We conduct thorough experiments on publicly available datasets to validate the advantages of the proposed method over state-of-the-art approaches.
arXiv Detail & Related papers (2021-08-11T21:17:02Z) - Towards Robustifying NLI Models Against Lexical Dataset Biases [94.79704960296108]
This paper explores both data-level and model-level debiasing methods to robustify models against lexical dataset biases.
First, we debias the dataset through data augmentation and enhancement, but show that the model bias cannot be fully removed via this method.
The second approach employs a bag-of-words sub-model to capture the features that are likely to exploit the bias and prevents the original model from learning these biased features.
arXiv Detail & Related papers (2020-05-10T17:56:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.