論文の概要: ASDF: Assembly State Detection Utilizing Late Fusion by Integrating 6D Pose Estimation
- arxiv url: http://arxiv.org/abs/2403.16400v1
- Date: Mon, 25 Mar 2024 03:30:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 16:07:18.771899
- Title: ASDF: Assembly State Detection Utilizing Late Fusion by Integrating 6D Pose Estimation
- Title(参考訳): ASDF:6次元ポス推定の統合による後期核融合を利用したアセンブリ状態検出
- Authors: Hannah Schieber, Shiyu Li, Niklas Corell, Philipp Beckerle, Julian Kreimeier, Daniel Roth,
- Abstract要約: アセンブリシナリオは、インサイトARビジュアライゼーションの恩恵を受け、ガイダンスを提供し、アセンブリ時間を短縮し、エラーを最小限にする。
我々は,リアルタイム能動オブジェクト検出フレームワークであるYOLOv8の長所の上に構築し,アセンブリ状態検出と組み合わせて6次元ポーズ推定の課題に対処する。
我々の評価は、Pose2Stateモジュールがアセンブリ状態の検出を改善し、アセンブリ状態の改善により、より堅牢な6Dポーズ推定がもたらされることを示している。
- 参考スコア(独自算出の注目度): 5.117781843071097
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In medical and industrial domains, providing guidance for assembly processes is critical to ensure efficiency and safety. Errors in assembly can lead to significant consequences such as extended surgery times, and prolonged manufacturing or maintenance times in industry. Assembly scenarios can benefit from in-situ AR visualization to provide guidance, reduce assembly times and minimize errors. To enable in-situ visualization 6D pose estimation can be leveraged. Existing 6D pose estimation techniques primarily focus on individual objects and static captures. However, assembly scenarios have various dynamics including occlusion during assembly and dynamics in the assembly objects appearance. Existing work, combining object detection/6D pose estimation and assembly state detection focuses either on pure deep learning-based approaches, or limit the assembly state detection to building blocks. To address the challenges of 6D pose estimation in combination with assembly state detection, our approach ASDF builds upon the strengths of YOLOv8, a real-time capable object detection framework. We extend this framework, refine the object pose and fuse pose knowledge with network-detected pose information. Utilizing our late fusion in our Pose2State module results in refined 6D pose estimation and assembly state detection. By combining both pose and state information, our Pose2State module predicts the final assembly state with precision. Our evaluation on our ASDF dataset shows that our Pose2State module leads to an improved assembly state detection and that the improvement of the assembly state further leads to a more robust 6D pose estimation. Moreover, on the GBOT dataset, we outperform the pure deep learning-based network, and even outperform the hybrid and pure tracking-based approaches.
- Abstract(参考訳): 医療・産業分野では、組み立てプロセスのガイダンスを提供することが効率と安全性の確保に不可欠である。
組立のエラーは、手術期間の延長、製造業における製造期間の延長や保守期間の延長など、重大な結果をもたらす可能性がある。
アセンブリシナリオは、インサイトARビジュアライゼーションの恩恵を受け、ガイダンスを提供し、アセンブリ時間を短縮し、エラーを最小限にする。
その場での視覚化6Dポーズ推定を活用できるようにする。
既存の6Dポーズ推定技術は主に個々のオブジェクトと静的キャプチャに焦点を当てている。
しかしながら、アセンブリのシナリオには、アセンブリ中の閉塞やアセンブリオブジェクトの外観の動的など、さまざまなダイナミクスがある。
既存の作業では、オブジェクト検出/6Dのポーズ推定とアセンブリ状態検出を組み合わせて、純粋なディープラーニングベースのアプローチ、あるいはアセンブリ状態検出をビルディングブロックに制限する。
組立状態検出と組み合わせた6次元ポーズ推定の課題に対処するため,我々のアプローチはリアルタイムに実行可能なオブジェクト検出フレームワークであるYOLOv8の強みに基づいている。
我々は、このフレームワークを拡張し、オブジェクトのポーズを洗練し、ネットワーク検出されたポーズ情報で知識を融合する。
Pose2Stateモジュールの後期融合を利用することで、洗練された6Dポーズ推定とアセンブリ状態検出が可能になります。
ポーズ情報と状態情報を組み合わせることで、Pose2Stateモジュールは最終的なアセンブリ状態を精度で予測します。
我々のASDFデータセットに対する評価は、Pose2Stateモジュールがアセンブリ状態の検出を改善し、アセンブリ状態の改善により、より堅牢な6Dポーズ推定が可能になることを示している。
さらに、GBOTデータセットでは、純粋なディープラーニングベースのネットワークよりも優れており、ハイブリッドと純粋なトラッキングベースのアプローチよりも優れています。
関連論文リスト
- UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3Dは多視点人間のポーズ推定のための新しいアプローチである。
直接的な3Dアノテーションを必要とせずに、堅牢性と柔軟性を向上させる。
論文 参考訳(メタデータ) (2024-04-23T00:18:00Z) - PViT-6D: Overclocking Vision Transformers for 6D Pose Estimation with
Confidence-Level Prediction and Pose Tokens [0.0]
分類トークンのカスタマイズによる直接6次元ポーズ推定のための視覚変換器の機能について検討する。
また、ほとんどの6次元ポーズ推定フレームワークに簡単に組み込むことができる、ポーズの信頼度を決定するための簡単な方法も導入する。
論文 参考訳(メタデータ) (2023-11-29T10:27:56Z) - Rigidity-Aware Detection for 6D Object Pose Estimation [60.88857851869196]
最近の6Dオブジェクトのポーズ推定方法は、最初にオブジェクト検出を使用して2Dバウンディングボックスを取得し、実際にポーズを回帰する。
本研究では,6次元ポーズ推定において対象物体が剛性であるという事実を利用した剛性認識検出手法を提案する。
このアプローチの成功の鍵となるのは可視性マップであり、これは境界ボックス内の各ピクセルとボックス境界の間の最小障壁距離を用いて構築することを提案する。
論文 参考訳(メタデータ) (2023-03-22T09:02:54Z) - Unseen Object 6D Pose Estimation: A Benchmark and Baselines [62.8809734237213]
本稿では,新しい物体の6次元ポーズ推定をアルゴリズムで行えるようにするための新しいタスクを提案する。
実画像と合成画像の両方でデータセットを収集し、テストセットで最大48個の未確認オブジェクトを収集する。
エンド・ツー・エンドの3D対応ネットワークをトレーニングすることにより、未確認物体と部分ビューRGBD画像との対応点を高精度かつ効率的に見つけることができる。
論文 参考訳(メタデータ) (2022-06-23T16:29:53Z) - FS6D: Few-Shot 6D Pose Estimation of Novel Objects [116.34922994123973]
6Dオブジェクトポーズ推定ネットワークは、多数のオブジェクトインスタンスにスケールする能力に制限がある。
本研究では,未知の物体の6次元ポーズを,余分な訓練を伴わずにいくつかの支援ビューで推定する。
論文 参考訳(メタデータ) (2022-03-28T10:31:29Z) - Occlusion-Aware Self-Supervised Monocular 6D Object Pose Estimation [88.8963330073454]
自己教師付き学習による新しい単眼6次元ポーズ推定手法を提案する。
ノイズの多い学生のトレーニングと差別化可能なレンダリングの現在の傾向を活用して、モデルをさらに自己監督する。
提案する自己超越法は,合成データに依存する他の方法よりも優れている。
論文 参考訳(メタデータ) (2022-03-19T15:12:06Z) - Occlusion-Robust Object Pose Estimation with Holistic Representation [42.27081423489484]
State-of-the-art(SOTA)オブジェクトのポーズ推定器は2段階のアプローチを取る。
我々は,新しいブロック・アンド・ブラックアウトバッチ拡張技術を開発した。
また,総合的なポーズ表現学習を促進するためのマルチ精度監視アーキテクチャも開発している。
論文 参考訳(メタデータ) (2021-10-22T08:00:26Z) - VIPose: Real-time Visual-Inertial 6D Object Pose Tracking [3.44942675405441]
本稿では,オブジェクトのポーズ追跡問題にリアルタイムに対処するために,VIPoseと呼ばれる新しいディープニューラルネットワーク(DNN)を提案する。
重要な貢献は、オブジェクトの相対的な6Dポーズを予測するために視覚的および慣性的特徴を融合する新しいDNNアーキテクチャの設計である。
このアプローチでは、最先端技術に匹敵する精度性能を示すが、リアルタイムであることにはさらなるメリットがある。
論文 参考訳(メタデータ) (2021-07-27T06:10:23Z) - Spatial Attention Improves Iterative 6D Object Pose Estimation [52.365075652976735]
本稿では,RGB画像を用いた6次元ポーズ推定の改良手法を提案する。
私たちの主な洞察力は、最初のポーズ推定の後、オブジェクトの異なる空間的特徴に注意を払うことが重要です。
実験により,このアプローチが空間的特徴に順応することを学び,被写体の一部を無視することを学び,データセット間でのポーズ推定を改善することを実証した。
論文 参考訳(メタデータ) (2021-01-05T17:18:52Z) - Object 6D Pose Estimation with Non-local Attention [29.929911622127502]
本研究では,オブジェクト検出フレームワークに6次元オブジェクトポーズパラメータ推定を組み込むネットワークを提案する。
提案手法は,YCB- VideoおよびLinemodデータセット上での最先端性能に到達する。
論文 参考訳(メタデータ) (2020-02-20T14:23:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。