論文の概要: In the Search for Optimal Multi-view Learning Models for Crop Classification with Global Remote Sensing Data
- arxiv url: http://arxiv.org/abs/2403.16582v1
- Date: Mon, 25 Mar 2024 09:49:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 15:18:23.197669
- Title: In the Search for Optimal Multi-view Learning Models for Crop Classification with Global Remote Sensing Data
- Title(参考訳): グローバルリモートセンシングデータを用いた作物分類のための最適多視点学習モデル探索
- Authors: Francisco Mena, Diego Arenas, Andreas Dengel,
- Abstract要約: 核融合戦略とエンコーダアーキテクチャの同時選択が地球規模の農地および作物タイプ分類に与える影響について検討した。
我々は5つの融合戦略(入力、特徴、決定、アンサンブル、ハイブリッド)と5つの時間エンコーダアーキテクチャ(LSTM、GRU、TempCNN、TAE、L-TAE)を可能なMVLモデル構成として使用する。
- 参考スコア(独自算出の注目度): 5.143097874851516
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Crop classification is of critical importance due to its role in studying crop pattern changes, resource management, and carbon sequestration. When employing data-driven techniques for its prediction, utilizing various temporal data sources is necessary. Deep learning models have proven to be effective for this task by mapping time series data to high-level representation for prediction. However, they face substantial challenges when dealing with multiple input patterns. The literature offers limited guidance for Multi-View Learning (MVL) scenarios, as it has primarily focused on exploring fusion strategies with specific encoders and validating them in local regions. In contrast, we investigate the impact of simultaneous selection of the fusion strategy and the encoder architecture evaluated on a global-scale cropland and crop-type classifications. We use a range of five fusion strategies (Input, Feature, Decision, Ensemble, Hybrid) and five temporal encoder architectures (LSTM, GRU, TempCNN, TAE, L-TAE) as possible MVL model configurations. The validation is on the CropHarvest dataset that provides optical, radar, and weather time series, and topographic information as input data. We found that in scenarios with a limited number of labeled samples, a unique configuration is insufficient for all the cases. Instead, a specialized combination, including encoder and fusion strategy, should be meticulously sought. To streamline this search process, we suggest initially identifying the optimal encoder architecture tailored for a particular fusion strategy, and then determining the most suitable fusion strategy for the classification task. We provide a technical framework for researchers exploring crop classification or related tasks through a MVL approach.
- Abstract(参考訳): 作物の分類は、作物のパターンの変化、資源管理、炭素隔離の研究において重要な役割を担っている。
予測にデータ駆動技術を用いる場合、様々な時間的データソースを利用する必要がある。
時系列データを予測のための高レベル表現にマッピングすることで、ディープラーニングモデルがこのタスクに有効であることが証明されている。
しかし、複数の入力パターンを扱う場合、大きな課題に直面します。
この文献は、特定のエンコーダと融合戦略を探索し、ローカルでそれらを検証することに集中しているため、MVL(Multi-View Learning)シナリオの限定的なガイダンスを提供している。
対照的に、核融合戦略とエンコーダアーキテクチャの同時選択が、世界規模の農地および作物タイプ分類に与える影響について検討する。
我々は5つの融合戦略(入力、特徴、決定、アンサンブル、ハイブリッド)と5つの時間エンコーダアーキテクチャ(LSTM、GRU、TempCNN、TAE、L-TAE)を可能なMVLモデル構成として使用する。
検証は、光学、レーダー、気象の時系列と地形情報を入力データとして提供するCropHarvestデータセット上で行われる。
ラベル付きサンプルの数が限られているシナリオでは、すべてのケースでユニークな設定が不十分であることがわかった。
代わりに、エンコーダと融合戦略を含む特別な組み合わせを慎重に求める必要がある。
この探索過程を合理化するために、まず、特定の融合戦略に適した最適なエンコーダアーキテクチャを特定し、次に分類タスクに最適な融合戦略を決定することを提案する。
我々は、MVL手法を用いて、作物の分類や関連するタスクを探索する研究者のための技術枠組みを提供する。
関連論文リスト
- Towards a Unified View of Preference Learning for Large Language Models: A Survey [88.66719962576005]
大きな言語モデル(LLM)は、非常に強力な能力を示す。
成功するための重要な要因の1つは、LLMの出力を人間の好みに合わせることである。
選好学習のすべての戦略を、モデル、データ、フィードバック、アルゴリズムの4つの構成要素に分解する。
論文 参考訳(メタデータ) (2024-09-04T15:11:55Z) - Hierarchical Attention and Parallel Filter Fusion Network for Multi-Source Data Classification [33.26466989592473]
マルチソースデータ分類のための階層的注意と並列フィルタ融合ネットワークを提案する。
提案手法は,各データセットの総合精度(OA)の91.44%と80.51%を達成する。
論文 参考訳(メタデータ) (2024-08-22T23:14:22Z) - MT-HCCAR: Multi-Task Deep Learning with Hierarchical Classification and Attention-based Regression for Cloud Property Retrieval [4.24122904716917]
本稿では,マルチタスク学習を用いたエンドツーエンドディープラーニングモデルMT-HCCARを紹介し,クラウドマスキング,クラウドフェーズ検索,COT予測について述べる。
MT-HCCARは階層型分類ネットワーク(HC)と分類支援型注意ベース回帰ネットワーク(CAR)を統合し、クラウドラベリングとCOT予測の精度と堅牢性を高める。
論文 参考訳(メタデータ) (2024-01-29T19:50:50Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
我々は、差別的かつ生成的なKGCフレームワークと互換性のあるプラグイン・アンド・プレイ方式であるContextualization Distillation戦略を導入する。
提案手法は,大規模言語モデルに対して,コンパクトで構造的な三重項を文脈に富んだセグメントに変換するように指示することから始まる。
多様なデータセットとKGC技術にわたる総合的な評価は、我々のアプローチの有効性と適応性を強調している。
論文 参考訳(メタデータ) (2024-01-28T08:56:49Z) - RGM: A Robust Generalizable Matching Model [49.60975442871967]
RGM(Robust Generalist Matching)と呼ばれる疎密マッチングのための深部モデルを提案する。
合成トレーニングサンプルと実世界のシナリオのギャップを狭めるために、我々は、疎対応基盤真理を持つ新しい大規模データセットを構築した。
さまざまな密集したスパースなデータセットを混ぜ合わせることができ、トレーニングの多様性を大幅に改善しています。
論文 参考訳(メタデータ) (2023-10-18T07:30:08Z) - SeisCLIP: A seismology foundation model pre-trained by multi-modal data
for multi-purpose seismic feature extraction [16.01738433164131]
マルチモーダルデータからのコントラスト学習を通じて学習した地震基盤モデルであるSeesCLIPを開発した。
時間周波数の地震スペクトルから重要な特徴を抽出するトランスフォーマーエンコーダと、同じ事象の位相とソース情報を統合するための基礎エンコーダから構成される。
特に、SeesCLIPのパフォーマンスは、イベント分類、ローカライゼーション、焦点機構解析タスクにおけるベースライン手法を上回る。
論文 参考訳(メタデータ) (2023-09-05T15:40:13Z) - Learning the Right Layers: a Data-Driven Layer-Aggregation Strategy for
Semi-Supervised Learning on Multilayer Graphs [2.752817022620644]
多層グラフ上のクラスタリング(あるいはコミュニティ検出)は、さらにいくつかの複雑さを生じさせる。
主な課題の1つは、各レイヤがクラスタのイテレーションの割り当てにどの程度貢献するかを確立することである。
利用可能な入力ラベルから異なる層を最適に非線形に組み合わせたパラメータフリーなラプラシアン正規化モデルを提案する。
論文 参考訳(メタデータ) (2023-05-31T19:50:11Z) - Generating Multidimensional Clusters With Support Lines [0.0]
合成データ生成のためのモジュラープロシージャであるClugenを提案する。
Clukenはオープンソースで、包括的なユニットテストとドキュメント化が可能である。
クラスタリングアルゴリズムの評価にはClugenが適していることを示す。
論文 参考訳(メタデータ) (2023-01-24T22:08:24Z) - Adaptive Context Selection for Polyp Segmentation [99.9959901908053]
本稿では,ローカルコンテキストアテンション(LCA)モジュール,グローバルコンテキストモジュール(GCM)モジュール,適応選択モジュール(ASM)モジュールで構成される適応コンテキスト選択に基づくエンコーダデコーダフレームワークを提案する。
LCAモジュールは、エンコーダ層からデコーダ層へローカルなコンテキスト機能を提供する。
GCMは、グローバルなコンテキストの特徴をさらに探求し、デコーダ層に送信することを目的としている。ASMは、チャンネルワイドアテンションを通じて、コンテキスト特徴の適応的選択と集約に使用される。
論文 参考訳(メタデータ) (2023-01-12T04:06:44Z) - Perceiver-VL: Efficient Vision-and-Language Modeling with Iterative
Latent Attention [100.81495948184649]
本稿では,長いビデオやテキストなどの高次元マルチモーダル入力を効率的に処理する視覚・言語フレームワークPerceiver-VLを提案する。
我々のフレームワークは、多くの最先端のトランスフォーマーベースモデルで使用される自己注意の二次的な複雑さとは対照的に、線形複雑性でスケールする。
論文 参考訳(メタデータ) (2022-11-21T18:22:39Z) - Efficient Data-specific Model Search for Collaborative Filtering [56.60519991956558]
協調フィルタリング(CF)はレコメンダシステムの基本的なアプローチである。
本稿では,機械学習(AutoML)の最近の進歩を動機として,データ固有のCFモデルを設計することを提案する。
ここでキーとなるのは、最先端(SOTA)のCFメソッドを統一し、それらを入力エンコーディング、埋め込み関数、インタラクション、予測関数の非結合ステージに分割する新しいフレームワークである。
論文 参考訳(メタデータ) (2021-06-14T14:30:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。