論文の概要: In the Search for Optimal Multi-view Learning Models for Crop Classification with Global Remote Sensing Data
- arxiv url: http://arxiv.org/abs/2403.16582v2
- Date: Wed, 4 Sep 2024 11:14:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-07 03:32:18.994367
- Title: In the Search for Optimal Multi-view Learning Models for Crop Classification with Global Remote Sensing Data
- Title(参考訳): グローバルリモートセンシングデータを用いた作物分類のための最適多視点学習モデル探索
- Authors: Francisco Mena, Diego Arenas, Andreas Dengel,
- Abstract要約: 我々は、光学、レーダー、気象時系列、地形情報を入力データとして提供するCropHarvestデータセットを検証に使用する。
我々は,特定の融合戦略に適した最適エンコーダアーキテクチャを同定し,その分類作業に最適な融合戦略を決定することを提案する。
- 参考スコア(独自算出の注目度): 5.143097874851516
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Studying and analyzing cropland is a difficult task due to its dynamic and heterogeneous growth behavior. Usually, diverse data sources can be collected for its estimation. Although deep learning models have proven to excel in the crop classification task, they face substantial challenges when dealing with multiple inputs, named Multi-View Learning (MVL). The methods used in the MVL scenario can be structured based on the encoder architecture, the fusion strategy, and the optimization technique. The literature has primarily focused on using specific encoder architectures for local regions, lacking a deeper exploration of other components in the MVL methodology. In contrast, we investigate the simultaneous selection of the fusion strategy and encoder architecture, assessing global-scale cropland and crop-type classifications. We use a range of five fusion strategies (Input, Feature, Decision, Ensemble, Hybrid) and five temporal encoders (LSTM, GRU, TempCNN, TAE, L-TAE) as possible configurations in the MVL method. We use the CropHarvest dataset for validation, which provides optical, radar, weather time series, and topographic information as input data. We found that in scenarios with a limited number of labeled samples, a unique configuration is insufficient for all the cases. Instead, a specialized combination should be meticulously sought, including an encoder and fusion strategy. To streamline this search process, we suggest identifying the optimal encoder architecture tailored for a particular fusion strategy, and then determining the most suitable fusion strategy for the classification task. We provide a methodological framework for researchers exploring crop classification through an MVL methodology.
- Abstract(参考訳): 農地の研究と分析は、その動的かつ不均一な成長挙動のために難しい課題である。
通常、様々なデータソースをその推定のために収集することができる。
ディープラーニングモデルは、作物分類タスクにおいて優れていることが証明されているが、複数の入力を扱う場合、MVL(Multi-View Learning)という大きな課題に直面している。
MVLシナリオで使用される手法は、エンコーダアーキテクチャ、融合戦略、最適化技術に基づいて構成することができる。
この文献は、主にローカル領域の特定のエンコーダアーキテクチャの使用に焦点を当てており、MVL方法論における他のコンポーネントのより深い探索は行っていない。
対照的に、核融合戦略とエンコーダアーキテクチャの同時選択について検討し、世界規模の作物と作物の分類を評価した。
MVL法では,5つの融合戦略(入力,特徴,決定,アンサンブル,ハイブリッド)と5つの時間エンコーダ(LSTM,GRU,TempCNN,TAE,L-TAE)が可能である。
我々は、光学、レーダー、気象時系列、地形情報を入力データとして提供するCropHarvestデータセットを検証に使用する。
ラベル付きサンプルの数が限られているシナリオでは、すべてのケースでユニークな設定が不十分であることがわかった。
代わりに、エンコーダと融合戦略を含む特別な組み合わせを慎重に求めるべきである。
この探索過程を合理化するために、特定の融合戦略に適した最適なエンコーダアーキテクチャを特定し、その分類タスクに最適な融合戦略を決定することを提案する。
MVL法を用いて作物の分類を探索する研究者のための方法論的枠組みを提供する。
関連論文リスト
- Towards a Unified View of Preference Learning for Large Language Models: A Survey [88.66719962576005]
大きな言語モデル(LLM)は、非常に強力な能力を示す。
成功するための重要な要因の1つは、LLMの出力を人間の好みに合わせることである。
選好学習のすべての戦略を、モデル、データ、フィードバック、アルゴリズムの4つの構成要素に分解する。
論文 参考訳(メタデータ) (2024-09-04T15:11:55Z) - Hierarchical Attention and Parallel Filter Fusion Network for Multi-Source Data Classification [33.26466989592473]
マルチソースデータ分類のための階層的注意と並列フィルタ融合ネットワークを提案する。
提案手法は,各データセットの総合精度(OA)の91.44%と80.51%を達成する。
論文 参考訳(メタデータ) (2024-08-22T23:14:22Z) - MT-HCCAR: Multi-Task Deep Learning with Hierarchical Classification and Attention-based Regression for Cloud Property Retrieval [4.24122904716917]
本稿では,マルチタスク学習を用いたエンドツーエンドディープラーニングモデルMT-HCCARを紹介し,クラウドマスキング,クラウドフェーズ検索,COT予測について述べる。
MT-HCCARは階層型分類ネットワーク(HC)と分類支援型注意ベース回帰ネットワーク(CAR)を統合し、クラウドラベリングとCOT予測の精度と堅牢性を高める。
論文 参考訳(メタデータ) (2024-01-29T19:50:50Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
我々は、差別的かつ生成的なKGCフレームワークと互換性のあるプラグイン・アンド・プレイ方式であるContextualization Distillation戦略を導入する。
提案手法は,大規模言語モデルに対して,コンパクトで構造的な三重項を文脈に富んだセグメントに変換するように指示することから始まる。
多様なデータセットとKGC技術にわたる総合的な評価は、我々のアプローチの有効性と適応性を強調している。
論文 参考訳(メタデータ) (2024-01-28T08:56:49Z) - RGM: A Robust Generalizable Matching Model [49.60975442871967]
RGM(Robust Generalist Matching)と呼ばれる疎密マッチングのための深部モデルを提案する。
合成トレーニングサンプルと実世界のシナリオのギャップを狭めるために、我々は、疎対応基盤真理を持つ新しい大規模データセットを構築した。
さまざまな密集したスパースなデータセットを混ぜ合わせることができ、トレーニングの多様性を大幅に改善しています。
論文 参考訳(メタデータ) (2023-10-18T07:30:08Z) - SeisCLIP: A seismology foundation model pre-trained by multi-modal data
for multi-purpose seismic feature extraction [16.01738433164131]
マルチモーダルデータからのコントラスト学習を通じて学習した地震基盤モデルであるSeesCLIPを開発した。
時間周波数の地震スペクトルから重要な特徴を抽出するトランスフォーマーエンコーダと、同じ事象の位相とソース情報を統合するための基礎エンコーダから構成される。
特に、SeesCLIPのパフォーマンスは、イベント分類、ローカライゼーション、焦点機構解析タスクにおけるベースライン手法を上回る。
論文 参考訳(メタデータ) (2023-09-05T15:40:13Z) - Learning the Right Layers: a Data-Driven Layer-Aggregation Strategy for
Semi-Supervised Learning on Multilayer Graphs [2.752817022620644]
多層グラフ上のクラスタリング(あるいはコミュニティ検出)は、さらにいくつかの複雑さを生じさせる。
主な課題の1つは、各レイヤがクラスタのイテレーションの割り当てにどの程度貢献するかを確立することである。
利用可能な入力ラベルから異なる層を最適に非線形に組み合わせたパラメータフリーなラプラシアン正規化モデルを提案する。
論文 参考訳(メタデータ) (2023-05-31T19:50:11Z) - Generating Multidimensional Clusters With Support Lines [0.0]
合成データ生成のためのモジュラープロシージャであるClugenを提案する。
Clukenはオープンソースで、包括的なユニットテストとドキュメント化が可能である。
クラスタリングアルゴリズムの評価にはClugenが適していることを示す。
論文 参考訳(メタデータ) (2023-01-24T22:08:24Z) - Adaptive Context Selection for Polyp Segmentation [99.9959901908053]
本稿では,ローカルコンテキストアテンション(LCA)モジュール,グローバルコンテキストモジュール(GCM)モジュール,適応選択モジュール(ASM)モジュールで構成される適応コンテキスト選択に基づくエンコーダデコーダフレームワークを提案する。
LCAモジュールは、エンコーダ層からデコーダ層へローカルなコンテキスト機能を提供する。
GCMは、グローバルなコンテキストの特徴をさらに探求し、デコーダ層に送信することを目的としている。ASMは、チャンネルワイドアテンションを通じて、コンテキスト特徴の適応的選択と集約に使用される。
論文 参考訳(メタデータ) (2023-01-12T04:06:44Z) - Perceiver-VL: Efficient Vision-and-Language Modeling with Iterative
Latent Attention [100.81495948184649]
本稿では,長いビデオやテキストなどの高次元マルチモーダル入力を効率的に処理する視覚・言語フレームワークPerceiver-VLを提案する。
我々のフレームワークは、多くの最先端のトランスフォーマーベースモデルで使用される自己注意の二次的な複雑さとは対照的に、線形複雑性でスケールする。
論文 参考訳(メタデータ) (2022-11-21T18:22:39Z) - Efficient Data-specific Model Search for Collaborative Filtering [56.60519991956558]
協調フィルタリング(CF)はレコメンダシステムの基本的なアプローチである。
本稿では,機械学習(AutoML)の最近の進歩を動機として,データ固有のCFモデルを設計することを提案する。
ここでキーとなるのは、最先端(SOTA)のCFメソッドを統一し、それらを入力エンコーディング、埋め込み関数、インタラクション、予測関数の非結合ステージに分割する新しいフレームワークである。
論文 参考訳(メタデータ) (2021-06-14T14:30:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。