Can Large Language Models (or Humans) Disentangle Text?
- URL: http://arxiv.org/abs/2403.16584v2
- Date: Fri, 3 May 2024 14:04:19 GMT
- Title: Can Large Language Models (or Humans) Disentangle Text?
- Authors: Nicolas Audinet de Pieuchon, Adel Daoud, Connor Thomas Jerzak, Moa Johansson, Richard Johansson,
- Abstract summary: We investigate the potential of large language models (LLMs) to disentangle text variables.
We employ a range of various LLM approaches in an attempt to disentangle text by identifying and removing information about a target variable.
We show that in the strong test of removing sentiment, the statistical association between the processed text and sentiment is still detectable to machine learning classifiers.
- Score: 6.858838842613459
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the potential of large language models (LLMs) to disentangle text variables--to remove the textual traces of an undesired forbidden variable in a task sometimes known as text distillation and closely related to the fairness in AI and causal inference literature. We employ a range of various LLM approaches in an attempt to disentangle text by identifying and removing information about a target variable while preserving other relevant signals. We show that in the strong test of removing sentiment, the statistical association between the processed text and sentiment is still detectable to machine learning classifiers post-LLM-disentanglement. Furthermore, we find that human annotators also struggle to disentangle sentiment while preserving other semantic content. This suggests there may be limited separability between concept variables in some text contexts, highlighting limitations of methods relying on text-level transformations and also raising questions about the robustness of disentanglement methods that achieve statistical independence in representation space.
Related papers
- Attacking Misinformation Detection Using Adversarial Examples Generated by Language Models [0.0]
We investigate the challenge of generating adversarial examples to test the robustness of text classification algorithms.
We focus on simulation of content moderation by setting realistic limits on the number of queries an attacker is allowed to attempt.
arXiv Detail & Related papers (2024-10-28T11:46:30Z) - Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
Existing zero-shot detectors primarily focus on token-level distributions, which are vulnerable to real-world domain shifts.
We propose a more robust method that incorporates abstract elements, such as event transitions, as key deciding factors to detect machine versus human texts.
arXiv Detail & Related papers (2024-10-04T18:42:09Z) - Spotting AI's Touch: Identifying LLM-Paraphrased Spans in Text [61.22649031769564]
We propose a novel framework, paraphrased text span detection (PTD)
PTD aims to identify paraphrased text spans within a text.
We construct a dedicated dataset, PASTED, for paraphrased text span detection.
arXiv Detail & Related papers (2024-05-21T11:22:27Z) - Pixel Sentence Representation Learning [67.4775296225521]
In this work, we conceptualize the learning of sentence-level textual semantics as a visual representation learning process.
We employ visually-grounded text perturbation methods like typos and word order shuffling, resonating with human cognitive patterns, and enabling perturbation to be perceived as continuous.
Our approach is further bolstered by large-scale unsupervised topical alignment training and natural language inference supervision.
arXiv Detail & Related papers (2024-02-13T02:46:45Z) - MAGE: Machine-generated Text Detection in the Wild [82.70561073277801]
Large language models (LLMs) have achieved human-level text generation, emphasizing the need for effective AI-generated text detection.
We build a comprehensive testbed by gathering texts from diverse human writings and texts generated by different LLMs.
Despite challenges, the top-performing detector can identify 86.54% out-of-domain texts generated by a new LLM, indicating the feasibility for application scenarios.
arXiv Detail & Related papers (2023-05-22T17:13:29Z) - Contextualized Semantic Distance between Highly Overlapped Texts [85.1541170468617]
Overlapping frequently occurs in paired texts in natural language processing tasks like text editing and semantic similarity evaluation.
This paper aims to address the issue with a mask-and-predict strategy.
We take the words in the longest common sequence as neighboring words and use masked language modeling (MLM) to predict the distributions on their positions.
Experiments on Semantic Textual Similarity show NDD to be more sensitive to various semantic differences, especially on highly overlapped paired texts.
arXiv Detail & Related papers (2021-10-04T03:59:15Z) - Fake it Till You Make it: Self-Supervised Semantic Shifts for
Monolingual Word Embedding Tasks [58.87961226278285]
We propose a self-supervised approach to model lexical semantic change.
We show that our method can be used for the detection of semantic change with any alignment method.
We illustrate the utility of our techniques using experimental results on three different datasets.
arXiv Detail & Related papers (2021-01-30T18:59:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.