Deciphering the Interplay between Local Differential Privacy, Average Bayesian Privacy, and Maximum Bayesian Privacy
- URL: http://arxiv.org/abs/2403.16591v3
- Date: Tue, 2 Apr 2024 14:28:06 GMT
- Title: Deciphering the Interplay between Local Differential Privacy, Average Bayesian Privacy, and Maximum Bayesian Privacy
- Authors: Xiaojin Zhang, Yulin Fei, Wei Chen,
- Abstract summary: We introduce Bayesian privacy and delve into the relationship between LDP and its Bayesian counterparts, unveiling novel insights into utility-privacy trade-offs.
Our work not only lays the groundwork for future empirical exploration but also promises to facilitate the design of privacy-preserving algorithms.
- Score: 5.622065847054885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The swift evolution of machine learning has led to emergence of various definitions of privacy due to the threats it poses to privacy, including the concept of local differential privacy (LDP). Although widely embraced and utilized across numerous domains, this conventional approach to measure privacy still exhibits certain limitations, spanning from failure to prevent inferential disclosure to lack of consideration for the adversary's background knowledge. In this comprehensive study, we introduce Bayesian privacy and delve into the intricate relationship between LDP and its Bayesian counterparts, unveiling novel insights into utility-privacy trade-offs. We introduce a framework that encapsulates both attack and defense strategies, highlighting their interplay and effectiveness. The relationship between LDP and Maximum Bayesian Privacy (MBP) is first revealed, demonstrating that under uniform prior distribution, a mechanism satisfying $\xi$-LDP will satisfy $\xi$-MBP and conversely $\xi$-MBP also confers 2$\xi$-LDP. Our next theoretical contribution are anchored in the rigorous definitions and relationships between Average Bayesian Privacy (ABP) and Maximum Bayesian Privacy (MBP), encapsulated by equations $\epsilon_{p,a} \leq \frac{1}{\sqrt{2}}\sqrt{(\epsilon_{p,m} + \epsilon)\cdot(e^{\epsilon_{p,m} + \epsilon} - 1)}$. These relationships fortify our understanding of the privacy guarantees provided by various mechanisms. Our work not only lays the groundwork for future empirical exploration but also promises to facilitate the design of privacy-preserving algorithms, thereby fostering the development of trustworthy machine learning solutions.
Related papers
- Enhancing Feature-Specific Data Protection via Bayesian Coordinate Differential Privacy [55.357715095623554]
Local Differential Privacy (LDP) offers strong privacy guarantees without requiring users to trust external parties.
We propose a Bayesian framework, Bayesian Coordinate Differential Privacy (BCDP), that enables feature-specific privacy quantification.
arXiv Detail & Related papers (2024-10-24T03:39:55Z) - Masked Differential Privacy [64.32494202656801]
We propose an effective approach called masked differential privacy (DP), which allows for controlling sensitive regions where differential privacy is applied.
Our method operates selectively on data and allows for defining non-sensitive-temporal regions without DP application or combining differential privacy with other privacy techniques within data samples.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - Convergent Differential Privacy Analysis for General Federated Learning: the $f$-DP Perspective [57.35402286842029]
Federated learning (FL) is an efficient collaborative training paradigm with a focus on local privacy.
differential privacy (DP) is a classical approach to capture and ensure the reliability of private protections.
arXiv Detail & Related papers (2024-08-28T08:22:21Z) - Rethinking Disclosure Prevention with Pointwise Maximal Leakage [36.3895452861944]
We propose a general model of utility and privacy in which utility is achieved by disclosing the value of low-entropy features of a secret $X$.
We prove that, contrary to popular opinion, it is possible to provide meaningful inferential privacy guarantees.
We show that PML-based privacy is compatible with and provides insights into existing notions such as differential privacy.
arXiv Detail & Related papers (2023-03-14T10:47:40Z) - On Differentially Private Federated Linear Contextual Bandits [9.51828574518325]
We consider cross-silo federated linear contextual bandit (LCB) problem under differential privacy.
We identify three issues in the state-of-the-art: (i) failure of claimed privacy protection and (ii) incorrect regret bound due to noise miscalculation.
We show that our algorithm can achieve nearly optimal'' regret without a trusted server.
arXiv Detail & Related papers (2023-02-27T16:47:49Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
arXiv Detail & Related papers (2023-02-19T16:58:53Z) - Privacy Amplification via Shuffling for Linear Contextual Bandits [51.94904361874446]
We study the contextual linear bandit problem with differential privacy (DP)
We show that it is possible to achieve a privacy/utility trade-off between JDP and LDP by leveraging the shuffle model of privacy.
Our result shows that it is possible to obtain a tradeoff between JDP and LDP by leveraging the shuffle model while preserving local privacy.
arXiv Detail & Related papers (2021-12-11T15:23:28Z) - Local Differential Privacy for Regret Minimization in Reinforcement
Learning [33.679678503441565]
We study privacy in the context of finite-horizon Markov Decision Processes (MDPs)
We formulate this notion of privacy for RL by leveraging the local differential privacy (LDP) framework.
We present an optimistic algorithm that simultaneously satisfies $varepsilon$-LDP requirements.
arXiv Detail & Related papers (2020-10-15T14:13:26Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
We design privacy preserving exploration policies for episodic reinforcement learning (RL)
We first provide a meaningful privacy formulation using the notion of joint differential privacy (JDP)
We then develop a private optimism-based learning algorithm that simultaneously achieves strong PAC and regret bounds, and enjoys a JDP guarantee.
arXiv Detail & Related papers (2020-09-18T20:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.