論文の概要: RU22Fact: Optimizing Evidence for Multilingual Explainable Fact-Checking on Russia-Ukraine Conflict
- arxiv url: http://arxiv.org/abs/2403.16662v2
- Date: Tue, 26 Mar 2024 07:13:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 12:03:31.811774
- Title: RU22Fact: Optimizing Evidence for Multilingual Explainable Fact-Checking on Russia-Ukraine Conflict
- Title(参考訳): RU22Fact:ロシア・ウクライナ紛争における多言語説明可能なFact-Checkingのエビデンス最適化
- Authors: Yirong Zeng, Xiao Ding, Yi Zhao, Xiangyu Li, Jie Zhang, Chao Yao, Ting Liu, Bing Qin,
- Abstract要約: 高品質な証拠は、ファクトチェックシステムを強化する上で重要な役割を担っている。
本稿では,Webから証拠を自動的に抽出・要約する大規模言語モデルを提案する。
RU22Factは、ロシアとウクライナの紛争に関する説明可能な事実チェックデータセットであり、16Kサンプルのうち2022年に構築された。
- 参考スコア(独自算出の注目度): 34.2739191920746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fact-checking is the task of verifying the factuality of a given claim by examining the available evidence. High-quality evidence plays a vital role in enhancing fact-checking systems and facilitating the generation of explanations that are understandable to humans. However, the provision of both sufficient and relevant evidence for explainable fact-checking systems poses a challenge. To tackle this challenge, we propose a method based on a Large Language Model to automatically retrieve and summarize evidence from the Web. Furthermore, we construct RU22Fact, a novel multilingual explainable fact-checking dataset on the Russia-Ukraine conflict in 2022 of 16K samples, each containing real-world claims, optimized evidence, and referenced explanation. To establish a baseline for our dataset, we also develop an end-to-end explainable fact-checking system to verify claims and generate explanations. Experimental results demonstrate the prospect of optimized evidence in increasing fact-checking performance and also indicate the possibility of further progress in the end-to-end claim verification and explanation generation tasks.
- Abstract(参考訳): ファクトチェック(Fact-checking)は、あるクレームの事実を、利用可能な証拠を調べて検証するタスクである。
高品質な証拠は、事実確認システムを強化し、人間にとって理解できる説明の生成を促進する上で重要な役割を担っている。
しかし、説明可能なファクトチェックシステムに関する十分な証拠と関連する証拠の提供が課題となっている。
そこで本研究では,Webから証拠を自動的に抽出・要約する大規模言語モデルを提案する。
さらに、2022年にロシアとウクライナの紛争に関する新しい多言語で説明可能な事実チェックデータセットRU22Factを構築し、それぞれに現実世界の主張、最適化された証拠、参照された説明を含む。
また,データセットのベースラインを確立するために,クレームの検証と説明生成を行うエンドツーエンドのファクトチェックシステムを開発した。
実験結果から, 事実確認性能の向上が期待できることを示すとともに, エンド・ツー・エンドのクレーム検証および説明生成タスクのさらなる進展の可能性を示す。
関連論文リスト
- Augmenting the Veracity and Explanations of Complex Fact Checking via Iterative Self-Revision with LLMs [10.449165630417522]
中国ではCHEF-EGとTrendFactという2つの複雑なファクトチェックデータセットを構築している。
これらのデータセットは、健康、政治、社会などの分野で複雑な事実を含む。
妥当性と説明の相互フィードバックを行うための統合フレームワークFactISRを提案する。
論文 参考訳(メタデータ) (2024-10-19T15:25:19Z) - Robust Claim Verification Through Fact Detection [17.29665711917281]
我々の新しいアプローチであるFactDetectは、大規模言語モデル(LLM)を利用して、証拠から簡潔な事実文を生成する。
生成された事実は、クレームとエビデンスと組み合わせられる。
提案手法は,F1スコアにおいて,教師付きクレーム検証モデルにおいて,15%の競合結果を示す。
論文 参考訳(メタデータ) (2024-07-25T20:03:43Z) - EX-FEVER: A Dataset for Multi-hop Explainable Fact Verification [22.785622371421876]
マルチホップで説明可能な事実検証のための先駆的データセットを提案する。
2ホップと3ホップの推論を含む6万件以上の主張により、それぞれがハイパーリンクされたウィキペディア文書から情報を要約して修正することによって作成される。
提案するEX-FEVERデータセットをベースラインとして,文書検索,説明生成,クレーム検証を行う。
論文 参考訳(メタデータ) (2023-10-15T06:46:15Z) - Give Me More Details: Improving Fact-Checking with Latent Retrieval [58.706972228039604]
証拠は、自動化された事実チェックにおいて重要な役割を果たす。
既存のファクトチェックシステムは、エビデンス文が与えられたと仮定するか、検索エンジンが返した検索スニペットを使用する。
資料から得られた全文を証拠として組み込んで,2つの豊富なデータセットを導入することを提案する。
論文 参考訳(メタデータ) (2023-05-25T15:01:19Z) - Complex Claim Verification with Evidence Retrieved in the Wild [73.19998942259073]
Webから生の証拠を取り出すことによって,実世界のクレームをチェックするための,最初の完全自動化パイプラインを提示する。
私たちのパイプラインには,クレーム分解,生文書検索,きめ細かい証拠検索,クレーム中心の要約,正確性判定という5つのコンポーネントが含まれています。
論文 参考訳(メタデータ) (2023-05-19T17:49:19Z) - Read it Twice: Towards Faithfully Interpretable Fact Verification by
Revisiting Evidence [59.81749318292707]
本稿では,証拠の検索とクレームの検証を行うためにReReadという名前の事実検証モデルを提案する。
提案システムは,異なる設定下での最良のレポートモデルに対して,大幅な改善を実現することができる。
論文 参考訳(メタデータ) (2023-05-02T03:23:14Z) - CHEF: A Pilot Chinese Dataset for Evidence-Based Fact-Checking [55.75590135151682]
CHEFは、10万件の現実世界のクレームに関する最初のChenese EvidenceベースのFact-checkingデータセットである。
このデータセットは、政治から公衆衛生まで、複数のドメインをカバーし、インターネットから取得した注釈付きの証拠を提供する。
論文 参考訳(メタデータ) (2022-06-06T09:11:03Z) - Generating Fact Checking Explanations [52.879658637466605]
まだ欠けているパズルの重要なピースは、プロセスの最も精巧な部分を自動化する方法を理解することです。
本稿では、これらの説明を利用可能なクレームコンテキストに基づいて自動生成する方法について、最初の研究を行う。
この結果から,個別に学習するのではなく,両目標を同時に最適化することで,事実確認システムの性能が向上することが示唆された。
論文 参考訳(メタデータ) (2020-04-13T05:23:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。